【高校数学】 数Ⅱ-54 点と直線④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-54 点と直線④

問題文全文(内容文):
◎次の点の座標を求めよう。

①点A(-2,3)に関して、点B(4,1)と対称な点C

②点(4,3)からの距離が5であるX軸上の点D

③2点(1,-3)、(3,2)から等距離にある、直線$y=2x$上の点E
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の点の座標を求めよう。

①点A(-2,3)に関して、点B(4,1)と対称な点C

②点(4,3)からの距離が5であるX軸上の点D

③2点(1,-3)、(3,2)から等距離にある、直線$y=2x$上の点E
投稿日:2015.06.13

<関連動画>

よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。

京都大過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜2点間の距離の公式(1)高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}\ $平面上に2点$A(3,5),B(-1,3)$がある。次の問いに答えよ。
(1)$AB$の距離を求めよ。
(2)2点$A,B$から等距離にある$x$軸上の点$P$の座標を求めよ。
(3)三角形$ABC$が正三角形となるように点$C$の座標を求めよ。
この動画を見る 

福田の数学〜明治大学2024理工学部第3問〜放物線と折れ線の位置関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$座標平面上も曲線$y=x^2$を$C$、直線$y=\frac{3}{4}x-\frac{1}{4}$を$l$とする。$s$を実数とし、直線$x=s$を$m$とする。曲線$C$上の点$P(t,t^2)$に対し、$P$から直線$l$との交点$Q$とする。また、$P$から直線$m$に下ろした垂線と$m$との交点を$R$とする。
$(1)$点$P$と点$Q$の距離$PQ$を$l$の式で表すと、$PQ=\boxed{け}$である。
$(2)$点$P$と点$R$の距離$PR$を$s$と$l$の式で表すと、$PR=\boxed{こ}$である。
$(3)PQ$は$t=\boxed{さ}$のとき、最小値$\boxed{し}$をとる。
$(4)s=\frac{2}{5}$のとき、$PQ=PR$となる点$P$をすべて求め、その$x$座標を小さい順に並べると$\boxed{す}$となる。
$(5)$実数$s$を固定したとき、$PQ=PR$となるような点$P$の個数を$N_s$とする。$N_s=4$となる$s$の範囲は$\boxed{せ}$
この動画を見る 

【数Ⅱ】直線に対称な点を求める【図の描き方を数式に】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
直線に対称な点を求める方法に関して解説していきます.
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜2点間の距離の公式(2)高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\triangle ABC$において、辺$BC$の中点を$M$とする。次を証明せよ。
$AB^2+AC^2=2(AM^2+BM^2)$

${\Large\boxed{2}}$ $\triangle ABC$の重心をGとするとき、次を証明せよ。
$AB^2+AC^2=BG^2+$$CG^2+$$4AG^2$
(注意)$A(x_1,y_1),B(x_2,y_2),C(x_3,y_3)$のとき$\triangle ABC$の重心の座標は
$\left(\displaystyle \frac{x_1+x_2+x_3}{3},\displaystyle \frac{y_1+y_2+y_3}{3}\right)$
この動画を見る 
PAGE TOP