大学入試問題#219 京都大学? (2016) 定積分 - 質問解決D.B.(データベース)

大学入試問題#219 京都大学? (2016) 定積分

問題文全文(内容文):
$a_n=\displaystyle \int_{\sqrt{ 3 }}^{2\sqrt{ 2 }}\displaystyle \frac{x^{2n-1}}{\sqrt{ x^2+1 }}\ dx$
$a_1,\ a_2$を求めよ。

出典:2016年京都大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\displaystyle \int_{\sqrt{ 3 }}^{2\sqrt{ 2 }}\displaystyle \frac{x^{2n-1}}{\sqrt{ x^2+1 }}\ dx$
$a_1,\ a_2$を求めよ。

出典:2016年京都大学 入試問題
投稿日:2022.06.05

<関連動画>

大学入試問題#183 東京理科大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{2+3e^x+e^{2x}}$

出典:東京理科大学 入試問題
この動画を見る 

大学入試問題#486「なんか見たことある形」 埼玉医科大学(2023) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} log(\displaystyle \frac{\cos\ x}{\sin\ x}+1) dx$

出典:2023年埼玉医科大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 

#福島大学2024#定積分_31#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{24}} \sin x\cos x\cos 2x dx$

出典:2024年福島大学
この動画を見る 

数学「大学入試良問集」【19−12 (sinx)^nの積分と漸化式の作成】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
自然数$n$に対して、定積分$I_n$を$I_n=\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^nx\ dx$で定める。
$n \geqq 3$のとき、$I_n$を$I_{n-2}$と$n$を用いて表せ。
また、$I_2・I_4$の値を求めよ。
この動画を見る 
PAGE TOP