大学入試問題#156 昭和大学(2019) 定積分 - 質問解決D.B.(データベース)

大学入試問題#156 昭和大学(2019) 定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{2}\displaystyle \frac{dx}{x^2-2x+2}$を求めよ。

出典:2019年昭和大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#昭和大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2}\displaystyle \frac{dx}{x^2-2x+2}$を求めよ。

出典:2019年昭和大学 入試問題
投稿日:2022.03.30

<関連動画>

ヨビノリのマンデー積分をぶっ飛ばせ!刺客は本人

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ

出典:2019年九州大学 過去問
この動画を見る 

福田の数学〜神戸大学2024年理系第5問〜定積分で表された関数と不等式

アイキャッチ画像
単元: #積分とその応用#定積分#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
この動画を見る 

大学入試問題#135 横浜市立大学(2020) 定積分 個人的には難

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\displaystyle \frac{dx}{\sin^3x\ \cos\ x}$

出典:2020年横浜市立大学 入試問題
この動画を見る 

【誘導形式:概要欄】大学入試問題#181 九州大学改(1987) 定積分 ウォリス積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}x^8\sqrt{ 1-x^2 }\ dx$

出典:1987年九州大学 入試問題
この動画を見る 

#藤田医科大学2023#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^5x$ $dx$

出典:2023年藤田医科大学
この動画を見る 
PAGE TOP