大学入試問題#163 信州大学(2004) 定積分 - 質問解決D.B.(データベース)

大学入試問題#163 信州大学(2004) 定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{2}\displaystyle \frac{log\ x}{x^3}\ dx$

出典:2004年信州大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2}\displaystyle \frac{log\ x}{x^3}\ dx$

出典:2004年信州大学 入試問題
投稿日:2022.04.08

<関連動画>

視聴者の僚太さんの積分「編集に5時間・・・・」

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2\ log\ 2}^{3\ log\ 2} \sqrt{ e^x-4 } \ dx$
この動画を見る 

【数Ⅲ-151】定積分③(レベルアップ編)

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分③・レベルアップ編)

Q.次の定積分を求めよ。

①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$

➁$\int_{0}^\pi |cosx |\ dx$

③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$
この動画を見る 

数学「大学入試良問集」【18−9 定積分関数と微分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{-x}^{x+4}\displaystyle \frac{t}{t^2+1}dt$について、次の各問いに答えよ。
(1)$f(x)=0$となる$x$の値を求めよ。
(2)$f'(x)=0$となる$x$の値を求めよ。
(3)$f(x)$が最小値をもつことを示し、その最小値を求めよ。
この動画を見る 

#青山学院大学2023#定積分_26#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \tan^2x dx$

出典:2023年青山学院大学
この動画を見る 

#奈良教育大学(2008) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{(1+x^2)^2} dx$

出典:2008年奈良教育大学
この動画を見る 
PAGE TOP