【高校数学】 数Ⅱ-101 三角関数を含む方程式・不等式③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-101 三角関数を含む方程式・不等式③

問題文全文(内容文):
$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。

①$\sin (\theta +\displaystyle \frac{π}{6})=\displaystyle \frac{\sqrt{ 3 }}{2}$

②$\cos(\theta-\displaystyle \frac{π}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$

③$\sin (2\theta-\displaystyle \frac{π}{3})=\displaystyle \frac{\sqrt{ 3 }}{2}$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。

①$\sin (\theta +\displaystyle \frac{π}{6})=\displaystyle \frac{\sqrt{ 3 }}{2}$

②$\cos(\theta-\displaystyle \frac{π}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$

③$\sin (2\theta-\displaystyle \frac{π}{3})=\displaystyle \frac{\sqrt{ 3 }}{2}$
投稿日:2015.08.17

<関連動画>

福田のわかった数学〜高校2年生087〜三角関数(26)2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(26) 2変数関数の最大最小
$\alpha,\beta$は0以上$2\pi$よりこの範囲を動く。
$\sqrt3\sin\beta-\cos\alpha\cos\beta$
の最大値最小値を求めよ。
この動画を見る 

福田の数学〜大阪大学2022年理系第2問〜三角関数と論証

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\alpha=\frac{2\pi}{7}$とする。以下の問いに答えよ。
(1)$\cos4\alpha=\cos3\alpha$であることを示せ。
(2)$f(x)=8x^3+4x^2-4x-1$とするとき、$f(\cos\alpha)=0$が成り立つことを示せ。
(3)$\cos\alpha$は無理数であることを示せ。

2022大阪大学理系過去問
この動画を見る 

【高校数学】 数Ⅱ-117 和と積の公式②・和(差)→積編

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sin A+\sin B=$①____________

$\cos A+\cos B=$②____________

$\sin A-\sin B=$③____________

$\cos A-\cos B=$④____________

◎次の値を求めよう。

⑤$\sin 105°+\sin 15°$

⑥$\cos 75°-\sin 15°$

⑦$\cos75°+\cos15°$
この動画を見る 

福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(19) なす角(3)
2点A(0,2), B(0,8)がある。点P(a,0) $(a \gt 0)$について$\angle APB$が最大となるaは?
この動画を見る 

【数Ⅱ】三角関数:2倍角の公式の利用! 直線y=1/3 xが直線y=axとx軸の正の向きとのなす角の二等分線となっているとき、aの値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
直線$y=\dfrac{1}{3}$ xが直線$y=ax$とx軸の正の向きとのなす角の二等分線となっているとき、aの値を求めよ。
この動画を見る 
PAGE TOP