【高校数学】 数Ⅱ-101 三角関数を含む方程式・不等式③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-101 三角関数を含む方程式・不等式③

問題文全文(内容文):
0θ<2πのとき、次の方程式を解こう。

sin(θ+π6)=32

cos(θπ4)=32

sin(2θπ3)=32
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
0θ<2πのとき、次の方程式を解こう。

sin(θ+π6)=32

cos(θπ4)=32

sin(2θπ3)=32
投稿日:2015.08.17

<関連動画>

【短時間でポイントチェック!!】2倍角の公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
0απcosα=45のとき、sin2α,cos2αは?
この動画を見る 

2変数関数の値域 日大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x>0,y>0において2x24xy+7y2x2+y2のとり得る範囲を求めよ.

日大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題093〜中央大学2020年度理工学部第5問〜円周上の点と三角形五角形の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#微分法と積分法#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
5 原点Oを中心とする半径1の円周上に2点
Q(cosa, sina), R(cos(a+b),sin(a+b))
をとる。ただし、a, bはa >0,b >0, a +b<π2を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
OPQの面積とORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<π2-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=π8, b=π4のときに最大値をとることを示せ。

2020中央大学理工学部過去問
この動画を見る 

【高校数学】 数Ⅱ-115 三角関数を含む方程式・不等式⑧

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
0x<2πのとき、次の不等式を解こう。

cos2x3sinx1

sin2x>sinx
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
n:正の整数

0πsin(2n1)xsin x dx=πを示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 
PAGE TOP preload imagepreload image