【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小①

問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$

②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$

③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$

④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$

②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$

③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$

④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
投稿日:2015.08.22

<関連動画>

東大卒のもっちゃんと数学Vol.7 加法定理を証明しよう(東大過去問)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
加法定理を証明 解説動画です
$\cos (\alpha+\beta)=\cos \alpha \cos\beta -\sin \alpha \sin\beta$
この動画を見る 

【数Ⅱ】三角関数:加法定理の利用

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sinx - \siny =\dfrac{1}{2} , \cosx - \cosy =\dfrac{1}{3}$ , のとき、$\cos (x-y)$ の値を求めなさい。
この動画を見る 

難問です!三角関数と整数の融合問題!解けますか?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,$ tanA,tanB,tanC$の値がすべて整数であるとき,それらの値を求めよ。

一橋大過去問
この動画を見る 

注意ポイントあり!定数分離の良問です【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数 $f(\theta)=\dfrac{1}{\sqrt 2}sin2 \theta-sin \theta+cos\theta$ ($0≦\theta≦\pi)$を考える。

(3)$a$を実数の定数とする。

$f(\theta)=a$となる$\theta$がちょうど2個であるような$a$のい範囲を求めよ。

北海道大過去問
この動画を見る 

札幌医大 三角方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #三角関数とグラフ#加法定理とその応用
指導講師: 鈴木貫太郎
問題文全文(内容文):
札幌医科大学過去問題
xに関する方程式
$cos2x+acosx+b=0$
この方程式$0 \leqq x < 2\pi$の範囲で2個の異なる実数解を持つためのa,bに関する条件
この動画を見る 
PAGE TOP