#51 数検1級1次 過去問 逆三角関数 - 質問解決D.B.(データベース)

#51 数検1級1次 過去問 逆三角関数

問題文全文(内容文):
$\sin(\sin^{-1}(-\displaystyle \frac{5}{13})+\cos^{-1}(\displaystyle \frac{4}{5}))$の値を求めよ。

出典:数検1級1次 過去問
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\sin(\sin^{-1}(-\displaystyle \frac{5}{13})+\cos^{-1}(\displaystyle \frac{4}{5}))$の値を求めよ。

出典:数検1級1次 過去問
投稿日:2022.03.07

<関連動画>

大学入試問題#608「絶対値・・・・」 横浜市立大学(2009) #定積分

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} |\sin2\ x| \sin\ x\ dx$

出典:2009年横浜市立大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第1問〜円の接線で出来る図形の面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 円$C$:$x^2$+$(y-1)^2$=1 に接する直線で、$x$切片、$y$切片がともに正であるものを$l$とする。$C$と$l$と$x$軸により囲まれた部分の面積を$S$、$C$と$l$と$y$軸により囲まれた部分の面積を$T$とする。$S$+$T$が最小となるとき、$S$-$T$の値を求めよ。
この動画を見る 

福田の数学〜立教大学2025経済学部第2問〜2点の位置関係と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$p,q$を正の実数とする。

原点を$O$とする座標平面上に

点$A(1,0)$、点$P\left(p,\dfrac{1}{p}\right)$,点$Q\left(q,\dfrac{2}{q}\right)$がある。

$\angle AOP=\alpha,\angle AOQ=\beta$とおき、

$P,Q$は$\alpha \lt \beta$を満たしながら動くものとする。

三角形$OPQ$の面積を$S$とし、

また、$T=\tan(\beta-\alpha)$とおく。

(1)$\cos\alpha,\sin\alpha$をそれぞれ$p$を用いて表せ。

また、$\cos\beta,\sin\beta$をそれぞれ$q$を用いて表せ。

(2)$T$を$p,q$を用いて表せ。

(3)$S$を$p,q$を用いて表せ。

(4)$t=pq$とおく。$\dfrac{S}{T}$を$t$を用いて表せ。

(5)$\dfrac{S}{T}$の最小値を求めよ。

$2025$年立教大学経済学部過去問題
この動画を見る 

14京都府教員採用試験(数学:5番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣$y=a(1+sinx)cosx(0 \leqq x \leqq 2\pi)$
の最大値が18のときaの値を求めよ。(a>0)
この動画を見る 

18神奈川県採用試験(数学:複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#三角関数#三角関数とグラフ#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$Z=\frac{\sqrt 3 - i}{\sqrt 2 + \sqrt 2 i } , Z^{50}$を求めよ。
この動画を見る 
PAGE TOP