【誘導あり:概要欄】大学入試問題#131 浜松医科大学(2020) 三角比 - 質問解決D.B.(データベース)

【誘導あり:概要欄】大学入試問題#131 浜松医科大学(2020) 三角比

問題文全文(内容文):
(1)
$x \gt 0$のとき
$x \gt \sin\ x$を示せ

(2)
$\displaystyle \frac{1}{6} \lt \sin10^{ \circ } \lt \displaystyle \frac{\pi}{18}$を示せ

出典:2020年浜松医科大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
(1)
$x \gt 0$のとき
$x \gt \sin\ x$を示せ

(2)
$\displaystyle \frac{1}{6} \lt \sin10^{ \circ } \lt \displaystyle \frac{\pi}{18}$を示せ

出典:2020年浜松医科大学 入試問題
投稿日:2022.03.02

<関連動画>

【わかりやすく】三角方程式(2次方程式を利用)【数学Ⅰ三角比】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の等式を満たす$\theta$を求めよ。
$2\sin^2\theta-3\cos\theta=0$
この動画を見る 

6次式の最大値と最小値!?【数学 入試問題】【自治医科大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$sin^6x+cos^6x$の最小値が$A$となるとき、$\dfrac{1}{A}$の値を求めよ。

自治医科大過去問
この動画を見る 

【わかりやすく】弧度法について解説(数学Ⅱ 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の角を弧度法で表せ。
(1)
$30^{ \circ }$

(2)
$45^{ \circ }$

(3)
$120^{ \circ }$

(4)
$-90^{ \circ }$

(5)
$108^{ \circ }$

(6)
$390^{ \circ }$

(7)
$\displaystyle \frac{\pi}{3}$

(8)
$\displaystyle \frac{7}{6}\pi$

(9)
$\displaystyle \frac{9}{4}\pi$

(10)
$-\displaystyle \frac{5}{12}n$

(11)
$\displaystyle \frac{11}{2}\pi$

(12)
$3$
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。

$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。

(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。

$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$

と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$

を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。

$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。

$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\

$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$    ①$\alpha$    ②$\frac{\pi}{2}$

2021共通テスト数学過去問
この動画を見る 

福田のわかった数学〜高校2年生064〜三角関数(3)三角方程式の基礎

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(3) 三角方程式の基礎
(1)$\sin\theta=-\frac{1}{2}$  (2)$\cos\theta=\frac{\sqrt3}{2}$  (3)$\tan\theta=-1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
この動画を見る 
PAGE TOP