大学入試問題#97 学習院大学(2003) 整数問題 帰納法 - 質問解決D.B.(データベース)

大学入試問題#97 学習院大学(2003) 整数問題 帰納法

問題文全文(内容文):
$n$:自然数
$11^{n+1}+12^{2n-1}$は$19$で割り切れることを示せ

出典:2003年学習院大学 入試問題
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#学習院大学
指導講師: ますただ
問題文全文(内容文):
$n$:自然数
$11^{n+1}+12^{2n-1}$は$19$で割り切れることを示せ

出典:2003年学習院大学 入試問題
投稿日:2022.01.24

<関連動画>

【高校数学】 数B-91 漸化式⑤

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=2,\dfrac{1}{a_{n+1}}=\dfrac{1}{a_n}+3^{n-1}$

②$a_1=\dfrac{1}{4},a_{n+1}=\dfrac{a_n}{3a_n+1}$
この動画を見る 

【数学B/数列】an+1=pan+q型の漸化式(特性方程式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のように定義される数列{$a_n$}の一般項$a_n$を求めよ。
$a_1=2,$  $a_{n+1}=3a_n-2$
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(3)〜漸化式で与えられた数列の項の値

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)$a$を実数とする。
数列$\left\{a_n\right\}$が次の条件を満たしている。
$(\textrm{i})a_1=a$
$(\textrm{ii})a_{n+1}=a_n^2-2a_n-3(n=1,2,3,\ldots)$
このとき、すべての正の整数$n$に対して、$a_n \leqq 10$となるような
$a$の最小値は$\boxed{\ \ ウ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 

【高校数学】 数B-94 漸化式⑧

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=3,a_2=5,a_{n+2}-3a_{n+1}+2a_n=0$

②$a_1=3,a_2=5,a_{n+2}-3a_{n+1}+2a_n=0$
この動画を見る 

17愛知県教員採用試験(数学:6番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
6⃣$2na_n=\displaystyle \sum_{k=1}^n k a_k+n$
$a_n$を求めよ。
この動画を見る 
PAGE TOP