大学入試問題#106 明治薬科大学(2004) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#106 明治薬科大学(2004) 整数問題

問題文全文(内容文):
$l,m,n$:自然数
$l \leqq m \leqq n$
$\displaystyle \frac{1}{l}+\displaystyle \frac{1}{m}+\displaystyle \frac{1}{n}=\displaystyle \frac{3}{2}$をみたす組$(l,m,n)$をすべて求めよ。

出典:2004年明治薬科大学 入試問題
チャプター:

04:30~解答のみ掲載

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$l,m,n$:自然数
$l \leqq m \leqq n$
$\displaystyle \frac{1}{l}+\displaystyle \frac{1}{m}+\displaystyle \frac{1}{n}=\displaystyle \frac{3}{2}$をみたす組$(l,m,n)$をすべて求めよ。

出典:2004年明治薬科大学 入試問題
投稿日:2022.02.02

<関連動画>

素数問題の良問だよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qは素数である.
$p^3-q^5=(p+q)^2$を満たす(p,q)の組をすべて求めよ.
この動画を見る 

連続する五つの整数から一つ除く

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
連続する5つの整数がある。そのうち1つを除いた4つの整数の和は2017となる。
除いた数を求めよ。
明治大学付属明治高等学校
この動画を見る 

18大阪府教員採用試験(数学:整数)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#その他
指導講師: ますただ
問題文全文(内容文):
$2018$
$x\gt 0$の小数部分を$b$とし,$x^2+b^2=40$を満たす.
このとき,$b$の範囲と$x$の値を求めよ.

18大阪府教員採用試験(数学:整数)過去問
この動画を見る 

合同式の基本 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1\times 3\times 5\times 7\times・・・・・・\times 999$を$16$で割った余りを求めよ.
この動画を見る 

2023東工大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^3-x)^2(y^3-y)=86400$
整数$x,y$を求めよ.

2023東工大過去問
この動画を見る 
PAGE TOP