大学入試問題#21 千葉大学(2020) tanの定積分 - 質問解決D.B.(データベース)

大学入試問題#21 千葉大学(2020) tanの定積分

問題文全文(内容文):
(1)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^n\theta\ d\theta+\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^{n+2}\theta\ d\theta$を$n$の式で表せ

(2)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^7\theta\ d\ \theta$を求めよ。

出典:2020年千葉大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
(1)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^n\theta\ d\theta+\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^{n+2}\theta\ d\theta$を$n$の式で表せ

(2)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^7\theta\ d\ \theta$を求めよ。

出典:2020年千葉大学 入試問題
投稿日:2021.09.29

<関連動画>

【解答速報・全問解説】2025年 神奈川大学給費生試験 数学(理系) 解答速報【マコちゃんねる】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)#大学入試解答速報#数学#神奈川大学
指導講師: 理数個別チャンネル
問題文全文(内容文):
著作権の関係で問題を映せないため、お手元に問題をご用意した上でご覧ください。

こちらの動画は、2024年12月22日(日)に実施された、2025年神奈川大学給費生試験の数学(文系)の解答速報です。

当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。

解説者は理数個別指導学院中山校のマコちゃんねる先生です。
https://www.youtube.com/playlist?list=PLdLgDY469Qr6v3hezRETVcwclXI1n9puZ
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である$\theta$
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと
ペナルティーエリアの左端までの距離をh(ただし、$h \lt a$とする)、Pからゴールライン
をx、Pの正面から右のゴールポストまでの角度を$\alpha$、Pの正面から左のゴールポスト
までの角を$\beta$としたとき、次頁の解放の文章を完成させなさい。

(解法)$\tan\theta$を最も大きくするxを求める問題と考えることができる。
$\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}$
$\tan\theta$の逆数を考えると、相加相乗平均の定理より
$\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}$
であり、$\frac{1}{\tan\theta}$が最小、すなわち$\tan\theta$が最大となるのは$x=\sqrt{\boxed{\ \ ケ\ \ }}$のときである。

(解法終わり)
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、
$x=\sqrt{\boxed{\ \ コ\ \ }}m$のときに、$\theta$が最も大きくなることが分かる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第2問〜球面と平面の交わりと切り取られる弦の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ Oを原点とする座標空間において、3点A(4,2,1), B(1,-4,1), C(2,2,-1)を通る平面を$\alpha$とおく。また、球面Sは半径が9で、Sと$\alpha$の交わりはAを中心としBを通る円であるとする。ただし、Sの中心Pのz座標は正とする。
(1)線分APの長さを求めよ。
(2)Pの座標を求めよ。
(3)Sと直線OCは2点で交わる。その2点間の距離を求めよ。

2023北海道大学理系過去問
この動画を見る 

福田の数学〜浜松医科大学2023年医学部第2問〜定積分と極限とグラフ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
医療で使われる技術の1つとして、磁気共鳴画像法 (MRI) がある。
MRI は画像の濃淡を表す関数、例えば

$M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ (xは実数)

を用いて体内の様子を可視化する技術である。 ここで $I_n(x) $ は

$I_n(x) = \displaystyle \int_0^n e^{ -t }cos(tx)dt $
(n=1, 2, 3, ...)である。以下の問いに答えよ。

(1) 定積分$I_n(x) $を求めよ。

(2) $M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ を求めよ

2023浜松医科大学医過去問


(3) 関数 $y= M(x)$ について、増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。

2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る 
PAGE TOP