大学入試問題#1 早稲田大学(2021) 微積の応用 - 質問解決D.B.(データベース)

大学入試問題#1 早稲田大学(2021) 微積の応用

問題文全文(内容文):
$f(x):x \gt 0$で定まる連続関数
$f(2)=1$
任意の$a \gt 0,\ b \gt 0$に対して
$\displaystyle \int_{a_2}^{a^2b}f(t)dt-\displaystyle \int_{a}^{a^2}f(t)dt$の値は$a$によらない。
$f(x)$を求めよ。

出典:2021年早稲田大学 入試問題
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x):x \gt 0$で定まる連続関数
$f(2)=1$
任意の$a \gt 0,\ b \gt 0$に対して
$\displaystyle \int_{a_2}^{a^2b}f(t)dt-\displaystyle \int_{a}^{a^2}f(t)dt$の値は$a$によらない。
$f(x)$を求めよ。

出典:2021年早稲田大学 入試問題
投稿日:2021.09.02

<関連動画>

#茨城大学(2022) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^3} (3x^2+1)log\ x\ dx$

出典:2022年茨城大学
この動画を見る 

大学入試問題#202 横浜国立大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\displaystyle \frac{\cos\ x}{\sin\ x})^4dx$

出典:横浜国立大学 入試問題
この動画を見る 

大学入試問題#401「よくあるセットメニュー」 富山県立大学(2012) #定積分 #極限

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$p \lt 0$
$\displaystyle \lim_{ p \to -\infty } \displaystyle \int_{p}^{0} \displaystyle \frac{3}{1+2e^{-x}} dx$

出典:2012年富山県立大学 入試問題
この動画を見る 

大学入試問題#359「読みの入った部分積分で解いてみた」 神戸大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\displaystyle \frac{2x\ sin\ x}{\cos^2x}dx$

出典:2014年神戸大学 入試問題
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 
PAGE TOP