大学入試問題#2 早稲田大学(2021) 図形・三角関数・微分 - 質問解決D.B.(データベース)

大学入試問題#2 早稲田大学(2021) 図形・三角関数・微分

問題文全文(内容文):
半径1の円に外接する$AB=AC$の$\triangle ABC$において
$\angle BAC=2\theta$とする。
(1)$AC$を$\theta$で表せ
(2)$AC$が最小となるときの$\sin\theta$の値を求めよ。

出典:2021年早稲田大学 入試問題
単元: #数Ⅱ#三角関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
半径1の円に外接する$AB=AC$の$\triangle ABC$において
$\angle BAC=2\theta$とする。
(1)$AC$を$\theta$で表せ
(2)$AC$が最小となるときの$\sin\theta$の値を求めよ。

出典:2021年早稲田大学 入試問題
投稿日:2021.09.03

<関連動画>

【高校数学】数Ⅲ-106 媒介変数表示された関数の導関数

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x$と$y$の関係が次の式で与えられるとき、
$\dfrac{dy}{dx}$を$t$で表せ。

①$x=\dfrac{1}{1+t^2},y=\dfrac{t}{1+t^2}$

②$x=a(t-\sin t),y=(1-\cos t)\quad (a\gt 0)$
この動画を見る 

福田のおもしろ数学488〜関数方程式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

実数から実数への関数$f(x)$が

任意の実数$x,y$に対して

$f(x+f(y))=x+f(f(y))$

を満たしている。また$f(2025)=2026$である。

$f(x)$を求めよ。
    
この動画を見る 

微分方程式(同次型) p 163, q3(1) 高専数学 数検1級

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$xy\dfrac{dy}{dx}=x^2+y^2$の一般項を求めよ.
この動画を見る 

【割り算の微分】商の微分の導出について解説しました!【数学III】

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
商の微分の導出について解説します。
この動画を見る 

福田の数学〜名古屋大学2024年理系第1問〜接線の本数と整数解

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$=$\sqrt x$+$\displaystyle\frac{2}{\sqrt x}$ ($x$>0)に対して、$y$=$f(x)$のグラフを$C$とする。
(1)$f(x)$の極値を求めよ。
(2)$x$軸上の点P($t$, 0)から$C$にちょうど2本の接線を引くことができるとする。
そのような実数$t$の値の範囲を求めよ。
(3)(2)において、$C$の2つの接点の$x$座標を$\alpha$, $\beta$($\alpha$<$\beta$)とする。$\alpha$, $\beta$がともに整数であるような組($\alpha$, $\beta$)をすべて求めよ。
この動画を見る 
PAGE TOP