問題文全文(内容文):
$\Large\boxed{1}$ 四面体OABCが次を満たすとする。
OA=OB=OC=1, ∠COA=∠COB=∠ACB, ∠AOB=90°
このとき、四面体OABCの体積を求めよ。
$\Large\boxed{1}$ 四面体OABCが次を満たすとする。
OA=OB=OC=1, ∠COA=∠COB=∠ACB, ∠AOB=90°
このとき、四面体OABCの体積を求めよ。
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 四面体OABCが次を満たすとする。
OA=OB=OC=1, ∠COA=∠COB=∠ACB, ∠AOB=90°
このとき、四面体OABCの体積を求めよ。
$\Large\boxed{1}$ 四面体OABCが次を満たすとする。
OA=OB=OC=1, ∠COA=∠COB=∠ACB, ∠AOB=90°
このとき、四面体OABCの体積を求めよ。
投稿日:2024.03.12





