【数Ⅲ】【微分とその応用】不等式の応用4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】不等式の応用4 ※問題文は概要欄

問題文全文(内容文):
$x→∞$のとき、$y=x$が$y=\log x$と比較して、
より急速に増大すること、すなわち

$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{\log x} =\infty$

が成り立つことを証明せよ。

ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。

①$x≧4$のとき、$x^2>\log x$が成り立つ
②$x≧4$のとき、$x>\log x$が成り立つ
③$x≧4$のとき、$\sqrt{x}>\log x$が成り立つ
チャプター:

0:00 問題概要
1:11 ③の証明
3:07 証明の解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x→∞$のとき、$y=x$が$y=\log x$と比較して、
より急速に増大すること、すなわち

$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{\log x} =\infty$

が成り立つことを証明せよ。

ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。

①$x≧4$のとき、$x^2>\log x$が成り立つ
②$x≧4$のとき、$x>\log x$が成り立つ
③$x≧4$のとき、$\sqrt{x}>\log x$が成り立つ
投稿日:2025.01.22

<関連動画>

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 

【数Ⅲ】不等式を微分を使って証明する【増減表を見て最小値を探す】

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)x \gt 1のとき\log x \lt \sqrt xを示せ.$
$(2)x \gt 1のとき\log x \lt \sqrt xを示せ.$
$ →\displaystyle \lim_{x\to \infty}\dfrac{\log x}{x}=0が示せ.$
$(3)x \gt 1のとき,\log x \gt \dfrac{2(x-1)}{x+1}を示せ.$
$(4)x \gt 0のとき,\sin x \gt x-\dfrac{x^2}{2}を示せ.$
この動画を見る 

08岡山県教員採用試験(数学:1-(4) 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$\dfrac{dy}{dx}=\dfrac{y(x-1)}{x}$
をみたす曲線で$(1,1)$を通る方程式を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る 

関数はパターンだ!!北陸高校(福井県)

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
△OAB=△PAB
S=?(S>2)
*図は動画内参照
北陸(改)
この動画を見る 
PAGE TOP