【数Ⅰ】【図形と計量】2直線のなす角 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】2直線のなす角 ※問題文は概要欄

問題文全文(内容文):
次の2直線のなす鋭角θを求めよ。
(1) y=3x,y=x
(2) y=13x,y=x
チャプター:

0:00 オープニング
0:10 (1)の基本方針の確認
0:31 手順① 2直線とx軸の正の向きとのなす角を求める
2:21 手順② それぞれの角の差を引き算で求める
2:56 手順③ 求めた角が鋭角になっているかの確認
3:23 (2)の問題・基本方針の確認
3:46 手順① 2直線とx軸の正の向きとのなす角を求める
6:26 手順② それぞれの角の差を引き算で求める
7:15 手順③ 求めた角が鋭角になっているかの確認

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2直線のなす鋭角θを求めよ。
(1) y=3x,y=x
(2) y=13x,y=x
投稿日:2025.01.30

<関連動画>

連立方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
{(1+x)(1+y)(x+y)=2024x3+y3=1927
x+y=?
この動画を見る 

知ってなきゃ解けない? 分母の有理化 開成高校  今年の反省 来年の抱負

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
分母を有理化せよ
11+2+3

開成高等学校
この動画を見る 

【数Ⅰ】数と式:間違える人続出!やっかいな1次不等式! -2<x<5 -7<y<4のとき、x-yの値の範囲を求めよ。

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
25,74のとき、の値の範囲を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第3問〜データの分析・平均・標準偏差・共分散・相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある病院の入院患者10人に対して、病院内で作っている粉薬の評価を調査した。
調査の評価項目は、粉薬の「飲みやすさ」と、「飲みやすさ」の要因と考えられる
「匂い」「舌触り」、「味」の計4項目についてである。
10人の患者が、評価項目について最も満足な場合は10、最も不安な場合は1として、
1以上10以下の整数で評価した。表内の平均値、分散、共分散の数値は四捨五入
されていない正確な値である。(※動画参照)
「飲みやすさ」との共分散は、「飲みやすさ」に対する評価の偏差と、各評価項目
に対する評価の偏差の積の平均値である。
(1)(i)患者番号5の「舌触り」に対する(t)の値は    である。
(ii)「飲みやすさ」に対する評価の標準偏差の値は    である。
(2)「飲みやすさ」に対する評価と「舌触り」に対する評価の相関係数の値を
分数で表すと    である。
(3)「飲みやすさ」と「匂い」、「飲みやすさ」と「舌触り」、「飲みやすさ」と「味」
の相関係数の値をそれぞれr1,r2,r3と表し、「匂い」、「舌触り」、「味」の評価の
平均値をそれぞれa1,a2,a3と表す。ai,ri (1i3)に対し、r¯a¯は以下の式で定める。
r¯=r1+r2+r33,a¯=a1+a2+a33
「飲みやすさ」との相関係数の値が最も1に近い評価項目は    である。
また、「rir¯<0かつaia¯>0」を満たす評価項目をすべて挙げると    である。

(4)「匂い」、「舌触り」、「味」のうち、    にあてはまらない評価項目
(以降、この評価項目をXと表す)に関して改良を行った。改良後の紛薬に対して、同じ10人の
患者がXと「飲みやすさ」について再び評価した。
改良後の調査結果では、Xの評価は10人全員の評価が改良前に比べてそれぞれ1上がっていた。
改良後のXの評価の平均値を求めると    であり、標準偏差は改良前調査における値と
比べて    。また、「飲みやすさ」の評価については、改良前の調査において評価が
1以上4以下の場合は2上がり、5以上9以下の場合は1上がり、10の場合は評価が変わらず
10であった。よって改良後の「飲みやすさ」に対する評価の平均値を求めると    であり、
標準偏差は改良前の調査における値と比べて    

2022慶應義塾大学薬学部過去問
この動画を見る 

【中学生から理解できる!】三角比(さんかくひ)[ エッセンシャル版 ]:~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
三角比に関して解説していきます.
この動画を見る 
PAGE TOP preload imagepreload image