問題文全文(内容文):
次の等式を同時に満たすベクトル $\vec{ x }$ ,$\vec{ y }$を $\vec{ a }$ ,$\vec{ b }$を用いて表せ。
(1)
$2\vec{ x }+\vec{ y }=\vec{ a } $
$\vec{ x }-\vec{ y }=\vec{ b }$
(2)
$2\vec{ b }-3\vec{ y }=\vec{ a }+\vec{ b }$
$\vec{ x }+\vec{ y }=\vec{ a }-\vec{ b }$
次の等式を同時に満たすベクトル $\vec{ x }$ ,$\vec{ y }$を $\vec{ a }$ ,$\vec{ b }$を用いて表せ。
(1)
$2\vec{ x }+\vec{ y }=\vec{ a } $
$\vec{ x }-\vec{ y }=\vec{ b }$
(2)
$2\vec{ b }-3\vec{ y }=\vec{ a }+\vec{ b }$
$\vec{ x }+\vec{ y }=\vec{ a }-\vec{ b }$
チャプター:
0:00 オープニング
0:06 問題文
0:15 (1)解説
1:41 (2)解説
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学C#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を同時に満たすベクトル $\vec{ x }$ ,$\vec{ y }$を $\vec{ a }$ ,$\vec{ b }$を用いて表せ。
(1)
$2\vec{ x }+\vec{ y }=\vec{ a } $
$\vec{ x }-\vec{ y }=\vec{ b }$
(2)
$2\vec{ b }-3\vec{ y }=\vec{ a }+\vec{ b }$
$\vec{ x }+\vec{ y }=\vec{ a }-\vec{ b }$
次の等式を同時に満たすベクトル $\vec{ x }$ ,$\vec{ y }$を $\vec{ a }$ ,$\vec{ b }$を用いて表せ。
(1)
$2\vec{ x }+\vec{ y }=\vec{ a } $
$\vec{ x }-\vec{ y }=\vec{ b }$
(2)
$2\vec{ b }-3\vec{ y }=\vec{ a }+\vec{ b }$
$\vec{ x }+\vec{ y }=\vec{ a }-\vec{ b }$
投稿日:2025.02.01