【数A】【図形の性質】三角形の辺と角 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【図形の性質】三角形の辺と角 ※問題文は概要欄

問題文全文(内容文):
∠B=90度の直角三角形ABCの辺BC上に頂点と異なる点Pを取る時、AB<AP<ACであることを証明せよ。
△ABCにおいて、AB>ACとする。∠Aの二等分線と辺BCの交点をPとする時、次の①~④のうちで常に成り立つものを全て選べ。
①BP=PC  ②AB>AP  ③AC>AP  ④AC>CP
次の長さの線分を3辺とする三角形が存在するようなXの値の範囲を求めよ。
(1)X、2、6  (2)3X、X+4、X+2
チャプター:

0:00 オープニング
0:05 1解説
3:10 2解説
8:14 3解説

単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
∠B=90度の直角三角形ABCの辺BC上に頂点と異なる点Pを取る時、AB<AP<ACであることを証明せよ。
△ABCにおいて、AB>ACとする。∠Aの二等分線と辺BCの交点をPとする時、次の①~④のうちで常に成り立つものを全て選べ。
①BP=PC  ②AB>AP  ③AC>AP  ④AC>CP
次の長さの線分を3辺とする三角形が存在するようなXの値の範囲を求めよ。
(1)X、2、6  (2)3X、X+4、X+2
投稿日:2025.02.14

<関連動画>

東京医科大 楽ちん問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学#東京医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数であり、$\sqrt{ab}$は整数でないとき、
$\sqrt[3]{301\sqrt{a}-319\sqrt{b}}=\sqrt{a}-\sqrt{b}$
をみたす$a,b$を求めよ。
この動画を見る 

富山大(医)整数問題基本

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$4^{3n-2}-1$を9で割ると3余ることを示せ.
(2)$n^3+3n^2+2n-3$は5の倍数でないことを示せ.

富山大(医)過去問
この動画を見る 

富山県立大 数学的帰納法・二項展開・合同式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ

出典:富山県立大学 過去問
この動画を見る 

【数A】【場合の数と確率】重複組合せ3 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)等式$x+y+z=7$を満たす負でない整数$x,y,z$の組は、全部で何個あるか。
(2)等式$x+y+z=9$を満たす正の整数$x,y,z$の組は、全部で何個あるか。
この動画を見る 

福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
この動画を見る 
PAGE TOP