福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第3問〜有限小数の性質と論証 - 質問解決D.B.(データベース)

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第3問〜有限小数の性質と論証

問題文全文(内容文):
次の問いに答えよ。
(1) a, b, nは自然数の定数で、bは4の倍数ではなく、n$ \geq$2 とする。aが$2^n$の倍数であるが、$ 2^{n +1}$の倍数ではないとき、a(a+b), 2a(2a + b) のいずれかは、$2 ^{n + 1}$ の倍数であるが、$2^{n + 2}$の倍数ではないことを示せ。
(2) bは自然数の定数で、4の倍数ではないとする。3以上の任意の自然数nに対して、次を満たす自然数 $a_n$ が存在することを示せ。$$ \frac{a_n(a_n + b)}{2^{2^n}}$$は、小数第n位の数字が5である小数第n位までの有限小数で表される。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1) a, b, nは自然数の定数で、bは4の倍数ではなく、n$ \geq$2 とする。aが$2^n$の倍数であるが、$ 2^{n +1}$の倍数ではないとき、a(a+b), 2a(2a + b) のいずれかは、$2 ^{n + 1}$ の倍数であるが、$2^{n + 2}$の倍数ではないことを示せ。
(2) bは自然数の定数で、4の倍数ではないとする。3以上の任意の自然数nに対して、次を満たす自然数 $a_n$ が存在することを示せ。$$ \frac{a_n(a_n + b)}{2^{2^n}}$$は、小数第n位の数字が5である小数第n位までの有限小数で表される。
投稿日:2025.01.20

<関連動画>

負の数の商と余り

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
-7を3で割ったときの商と余りは?
この動画を見る 

インド数学オリンピック

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは正の実数である.
$\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=1$を満たす
$abc \leqq \dfrac{1}{8}$を示せ.

インド数学オリンピック過去問
この動画を見る 

チャレンジチューブ 解答編

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$を全て求めよ

(2)
$x^2+2y^2=11z^2$を満たすすべて2以上の自然数$x,y,z$を1組例示せよ
※追加$x,y,z$互いに素
この動画を見る 

福田のおもしろ数学336〜連続する奇数の素数の和は3つ以上の因数をもつ証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
連続する奇数の素数$p,q$に対し$p+q$は$1$より大きい3個以上の整数の積で表される。これを証明してください。
この動画を見る 

英国数学オリンピック 高校入試レベルの問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$

英国数学オリンピック過去問
この動画を見る 
PAGE TOP