福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第2問〜関数列の極限 - 質問解決D.B.(データベース)

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第2問〜関数列の極限

問題文全文(内容文):
$p$を$2$以上の自然数の定数とする。$n$=$2$, $3$, $4$...に対して、関数 $f_n(x) $$(n\gt0)$を

$f_n(x) = (1 + \dfrac{x}{n})(1 + \dfrac{x}{n+1}) \cdot\cdot \cdot(1 + \dfrac{x}{pn})
$

で定める。例えば$p$ = $2$のとき

$
f_2(x) = (1 + \dfrac{x}{2})(1 + \dfrac{x}{3})(1 + \dfrac{x}{4})
$

$
f_3(x) = (1 + \dfrac{x}{3})(1 + \dfrac{x}{4})(1 + \dfrac{x}{5})(1 + \dfrac{x}{6})
$

である。$f(x)=\displaystyle \lim_{ n \to \infty }f_n(x)$ $(n\gt0)$とおくとき、次の問に答えよ。

$(1)$$t$$\geqq$$0$のとき、不等式$\dfrac{t}{1+t}$$\leqq$$\log(1+t)$$\leqq$$t$ が成り立つことを示せ。ただし、対数は自然対数とする。

$(2)$ $f(x)$を求めよ。
単元: #大学入試過去問(数学)#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$p$を$2$以上の自然数の定数とする。$n$=$2$, $3$, $4$...に対して、関数 $f_n(x) $$(n\gt0)$を

$f_n(x) = (1 + \dfrac{x}{n})(1 + \dfrac{x}{n+1}) \cdot\cdot \cdot(1 + \dfrac{x}{pn})
$

で定める。例えば$p$ = $2$のとき

$
f_2(x) = (1 + \dfrac{x}{2})(1 + \dfrac{x}{3})(1 + \dfrac{x}{4})
$

$
f_3(x) = (1 + \dfrac{x}{3})(1 + \dfrac{x}{4})(1 + \dfrac{x}{5})(1 + \dfrac{x}{6})
$

である。$f(x)=\displaystyle \lim_{ n \to \infty }f_n(x)$ $(n\gt0)$とおくとき、次の問に答えよ。

$(1)$$t$$\geqq$$0$のとき、不等式$\dfrac{t}{1+t}$$\leqq$$\log(1+t)$$\leqq$$t$ が成り立つことを示せ。ただし、対数は自然対数とする。

$(2)$ $f(x)$を求めよ。
投稿日:2025.01.19

<関連動画>

福田の数学〜東北大学2023年理系第2問〜三角方程式の解の個数とその極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 関数f(x)=$\sin3x$+$\sin x$について、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数$x$のうち、最小のものを求めよ。
(2)正の整数$m$に対して、f(x)=0を満たす正の実数$x$のうち、$m$以下のものの個数を$p(m)$とする。極限値$\displaystyle\lim_{m \to \infty}\frac{p(m)}{m}$ を求めよ。

2023東北大学理系過去問
この動画を見る 

数3を使わずに分数関数の最小値を求める

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$は正の実数である.
$\dfrac{x^2+x+196}{x+1}$は$x=\Box$のとき,最小値$\Box$となる.
$\Box$を求めよ.
この動画を見る 

東大(文)三次方程式と合成関数 実数解の個数 高校数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2004東京大学過去問題
$f(x)=x^3-3x$
$g(x)= \{ f(x) \}^3-3f(x)$
$h(x)= \{ g(x) \}^3-3g(x)$
(1)f(x)=a (実数)を満たす実数xの個数
(2)g(x)=0を満たす実数xの個数
(3)h(x)=0を満たす実数xの個数
この動画を見る 

練習問題48 岡山大学2011 面積、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n \in IN,\ 0 \leqq x \leqq 1$
曲線$y=x^2(1-x)^n$と$x$軸で囲まれた図形の面積を$S_n$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\ S_k$を求めよ。

出典:2011年岡山大学 練習問題
この動画を見る 

難易度バリ高の極限 by 餃子n人前さん ※作成者の解答を参考に動画を作成しています。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,$ $a_{n+1}+a_n=\displaystyle \frac{1}{n}$のとき、
$\displaystyle \lim_{ n \to \infty } |na_n|$を求めよ
この動画を見る 
PAGE TOP