【数Ⅱ】【複素数と方程式】2次方程式の解と判別式6 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式6 ※問題文は概要欄

問題文全文(内容文):
次の式を、(ア)有理数(イ)実数(ウ)複素数 の各範囲で因数分解せよ。
(1)$x^4-3x^2+2$   (2)$6x^4-7x^2-3$   (3)$x^4+4$

2次方程式$x^2-2(m-3)x+4m=0$が次のような異なる2つの解をもつように、定数$m$の値の範囲を定めよ。
(1)2つとも正   (2)2つとも負   (3)異符号

2次方程式$x^2+2mx+2m^2-5=0$が、次のような異なる2つの解をもつように、定数$m$の値の範囲を定めよ。
(1)2つの解がともに1より大きい。
(2)2つの解がともに1より小さい。
(3)1つの解が1より大きく、他の解が1より小さい。
チャプター:

0:00 オープニング
0:04 1解説
8:17 2解説
14:55 3解説

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を、(ア)有理数(イ)実数(ウ)複素数 の各範囲で因数分解せよ。
(1)$x^4-3x^2+2$   (2)$6x^4-7x^2-3$   (3)$x^4+4$

2次方程式$x^2-2(m-3)x+4m=0$が次のような異なる2つの解をもつように、定数$m$の値の範囲を定めよ。
(1)2つとも正   (2)2つとも負   (3)異符号

2次方程式$x^2+2mx+2m^2-5=0$が、次のような異なる2つの解をもつように、定数$m$の値の範囲を定めよ。
(1)2つの解がともに1より大きい。
(2)2つの解がともに1より小さい。
(3)1つの解が1より大きく、他の解が1より小さい。
投稿日:2025.02.18

<関連動画>

岡山大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師:
問題文全文(内容文):
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$

出典:岡山大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-46 高次方程式①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。

①$(x-2)(2x+1)=0$

②$(x+4)(x-3)(3x-2)=0$

③$(x^2-1)(x^2-16)=0$

④$x^4=81$
この動画を見る 

【数Ⅱ】複素数の計算【簡単なようで間違えやすい計算】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ iと等しいものを2つ選べ.
\dfrac{1}{i^3},\sqrt{-\dfrac{1}{2}}\sqrt{-2}i,\dfrac{1}{\sqrt{-1}},\dfrac{-3+2i}{2+3i}$
この動画を見る 

3次方程式の解と係数の関係 あっという間に出す方法もあるよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2,\beta^2,\delta^2$を解にもつ方程式を1つ例示せよ.
この動画を見る 

瞬殺!かいぶん数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$n^8+2n^7+3n^6+4n^5+5n^4+4n^3+3n^2+$
$2n+1$は素数でないことを示せ.
この動画を見る 
PAGE TOP