【数Ⅱ】【三角関数】三角関数の合成4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】三角関数の合成4 ※問題文は概要欄

問題文全文(内容文):
0$\leqq$x$\leqq$πのとき、次の関数の最大値, 最小値を求めよ。(1)については、そのときのxの値も求めよ。
(1) y=sinx+$\sqrt{3}$cosx
(2) y=2sinx+cosx
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
2:28 (2)解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0$\leqq$x$\leqq$πのとき、次の関数の最大値, 最小値を求めよ。(1)については、そのときのxの値も求めよ。
(1) y=sinx+$\sqrt{3}$cosx
(2) y=2sinx+cosx
投稿日:2025.03.13

<関連動画>

三角関数の合成とか大丈夫ですか?【数学 入試問題】【慶應義塾大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数
$y=2cos^2\theta-\sqrt3 cos\theta sin\theta-sin^2\theta (0≦\theta≦\pi)$
の最大値とその時の$\theta$を求めよ。

慶應義塾大過去問
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(2)〜余事象と確率の加法定理

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
下図のように1から9までの数字が1つずつ記入された、9枚のカードがある。
$\boxed{1}\ \ \ \boxed{2}\ \ \ \boxed{3}\ \ \ \boxed{4}\ \ \ \boxed{5}\ \ \ \boxed{6}\ \ \ \boxed{7}\ \ \ \boxed{8}\ \ \ \boxed{9}$
これら9枚のカードから同時に取り出した3枚のカードの数字の積が
10で割り切れる確率は$\boxed{イ}$である。

2022立教大学理学部過去問
この動画を見る 

【高校数学】加法定理③~三角関数の合成~ 4-14【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【三角関数の合成】

a sinθ+b cosθ=$\sqrt{ \mathstrut a²+b² }$sin(θ+α)(=r sin(θ+α))
ただし、sinα=$\displaystyle \frac{b}{ \sqrt{a²+b²} }$,cos α=$\displaystyle \frac{a}{ \sqrt{a²+b²} }$,r=$\sqrt{ \mathstrut a²+b² }$である。

(1) 三角関数を合成せよ
sinθ+$\sqrt{ \mathstrut 3 }$cosθ

(2) 0≦x<2πのとき、次の方程式を解け
sin x-$\sqrt{ \mathstrut 3 }$cosx=1
この動画を見る 

大阪大2022

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.

2022阪大過去問
この動画を見る 

横浜市立(医) 正二十面体 面のなす角 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'94横浜市立大学過去問題
(1)正五角形ABCDEの一辺を1としたときのAD=ACの長さ
(2)正二十面体のとなり合う面のなす角をθとしたときのcosθの値
この動画を見る 
PAGE TOP