【数Ⅱ】【微分法と積分法】面積が一定になることを示す ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】面積が一定になることを示す ※問題文は概要欄

問題文全文(内容文):
放物線y=x²+4上の点Pにおける放物線の接線と放物線y=x²で囲まれた図形の面積は、点Pの選び方に関係なく一定であることを示せ。
チャプター:

0:00 オープニング
0:05 問題文
0:18 解説
2:56 エンディング

単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=x²+4上の点Pにおける放物線の接線と放物線y=x²で囲まれた図形の面積は、点Pの選び方に関係なく一定であることを示せ。
投稿日:2025.03.31

<関連動画>

【理数個別の過去問解説】2018年度一橋大学 数学 第5問解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#一橋大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一橋大学2018年第5問
aを実数とし, $f(x)=x-x³,g(x)=a(x-x²)$とする。2つの曲線$y=f(x),y=g(x)$は$0<x<1$の範囲に共有点をもつ。
(1)aのとりうる値の範囲を求めよ。
(2)y=f(x)とy=g(x)で囲まれた2つの部分の面積が等しくなるようなaの値を求めよ。
この動画を見る 

文系積分の基本 中央大(文学部)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021中央大学過去問題
$y=x(x-1)^2 \cdots$①
$y=kx \cdots$②
①と②は異なる3点で交わり、①と②とで囲まれる2つの部分の面積が等しい
kの値
この動画を見る 

【積分】積分がなぜ面積を求められるのかについて解説しました!【数学III】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
積分の原理を解説します。
この動画を見る 

【数Ⅱ】【微分法と積分法】囲まれた図形の面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた図形の面積Sを求めよ。
(1)y=-x³+3x,y=x
(2)y=x³-6x²,y=x²
この動画を見る 

名古屋大 微分積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,f(x)=ax^2,g(x)=x(x-4)^2$

(1)
$f(x)$と$g(x)$は相異なる3点で交わることを示せ

(2)
$f(x)$と$g(x)$で囲まれる2つの部分の面積が等しくなる$a$の値を求めよ

出典:名古屋大学 過去問
この動画を見る 
PAGE TOP