問題文全文(内容文):
次の条件によって定められる数列
$\{a_n\}$ の一般項を求めよ。
(1) $a_1 = 1$, $a_{n+1} = \frac{a_n}{a_n + 1}$
(2)$a_1 = \frac{1}{2}$, $a_{n+1} = \frac{a_n}{2a_n + 3}$
次の条件によって定められる数列
$\{a_n\}$ の一般項を求めよ。
(1) $a_1 = 1$, $a_{n+1} = \frac{a_n}{a_n + 1}$
(2)$a_1 = \frac{1}{2}$, $a_{n+1} = \frac{a_n}{2a_n + 3}$
単元:
#数列#漸化式#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列
$\{a_n\}$ の一般項を求めよ。
(1) $a_1 = 1$, $a_{n+1} = \frac{a_n}{a_n + 1}$
(2)$a_1 = \frac{1}{2}$, $a_{n+1} = \frac{a_n}{2a_n + 3}$
次の条件によって定められる数列
$\{a_n\}$ の一般項を求めよ。
(1) $a_1 = 1$, $a_{n+1} = \frac{a_n}{a_n + 1}$
(2)$a_1 = \frac{1}{2}$, $a_{n+1} = \frac{a_n}{2a_n + 3}$
投稿日:2025.04.05





