問題文全文(内容文):
$abc=1$, $a,b,c > 0$のとき
$a^{b+c}b^{c+a}c^{a+b} \leqq1$が成り立つことを証明せよ。
$abc=1$, $a,b,c > 0$のとき
$a^{b+c}b^{c+a}c^{a+b} \leqq1$が成り立つことを証明せよ。
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$abc=1$, $a,b,c > 0$のとき
$a^{b+c}b^{c+a}c^{a+b} \leqq1$が成り立つことを証明せよ。
$abc=1$, $a,b,c > 0$のとき
$a^{b+c}b^{c+a}c^{a+b} \leqq1$が成り立つことを証明せよ。
投稿日:2025.01.06





