問題文全文(内容文):
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{1+2+3+\cdots\cdots+n}{n^2}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{4+7+10+\cdots\cdots+(3n+1)}{5+8+11+\cdots\cdots+(3n+2)}$
(3) $ \displaystyle \lim_{ n \to \infty}\frac{3+7+11+\cdots\cdots+(4n-1)}{3+5+7+\cdots\cdots+(2n+1)}$
(4) $ \displaystyle \lim_{ n \to \infty}(\frac{1+2+3+\cdots\cdots+n}{n+2}-\frac{n}{2})$
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{1+2+3+\cdots\cdots+n}{n^2}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{4+7+10+\cdots\cdots+(3n+1)}{5+8+11+\cdots\cdots+(3n+2)}$
(3) $ \displaystyle \lim_{ n \to \infty}\frac{3+7+11+\cdots\cdots+(4n-1)}{3+5+7+\cdots\cdots+(2n+1)}$
(4) $ \displaystyle \lim_{ n \to \infty}(\frac{1+2+3+\cdots\cdots+n}{n+2}-\frac{n}{2})$
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{1+2+3+\cdots\cdots+n}{n^2}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{4+7+10+\cdots\cdots+(3n+1)}{5+8+11+\cdots\cdots+(3n+2)}$
(3) $ \displaystyle \lim_{ n \to \infty}\frac{3+7+11+\cdots\cdots+(4n-1)}{3+5+7+\cdots\cdots+(2n+1)}$
(4) $ \displaystyle \lim_{ n \to \infty}(\frac{1+2+3+\cdots\cdots+n}{n+2}-\frac{n}{2})$
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{1+2+3+\cdots\cdots+n}{n^2}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{4+7+10+\cdots\cdots+(3n+1)}{5+8+11+\cdots\cdots+(3n+2)}$
(3) $ \displaystyle \lim_{ n \to \infty}\frac{3+7+11+\cdots\cdots+(4n-1)}{3+5+7+\cdots\cdots+(2n+1)}$
(4) $ \displaystyle \lim_{ n \to \infty}(\frac{1+2+3+\cdots\cdots+n}{n+2}-\frac{n}{2})$
投稿日:2025.05.21





