【数C】【ベクトルの内積】a・b= b・c=c・a=-2,a+b+c=0とする。(1) a , b , c の大きさを求めよ。(2) a と b のなす角θを求めよ - 質問解決D.B.(データベース)

【数C】【ベクトルの内積】a・b= b・c=c・a=-2,a+b+c=0とする。(1) a , b , c の大きさを求めよ。(2) a と b のなす角θを求めよ

問題文全文(内容文):
$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = -2$ ,
$ \vec{a} + \vec{b} + \vec{c} = \vec{0}$とする。
(1) $\vec{a} , \vec{b} , \vec{c}$ の大きさを求めよ。
(2) $\vec{a}$ と $\vec{b}$ のなす角 $\theta$ を求めよ。
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = -2$ ,
$ \vec{a} + \vec{b} + \vec{c} = \vec{0}$とする。
(1) $\vec{a} , \vec{b} , \vec{c}$ の大きさを求めよ。
(2) $\vec{a}$ と $\vec{b}$ のなす角 $\theta$ を求めよ。
投稿日:2025.05.30

<関連動画>

【数B】ベクトル:ベクトルの基本⑬内心ベクトルの求め方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
角$A=60°,AB=8,AC=5$である三角形ABCの内心をIとする。$AB=b,AC=c$とするときAIをb,cを用いて表せ.
この動画を見る 

【数C】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(2)s+t≦4,s≧0,t≧0

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(2)s+t≦4,s≧0,t≧0
この動画を見る 

【高校数学】 数B-13 ベクトルの内積②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ 0 }$出ない2つのベクトル$\overrightarrow{ a }・\overrightarrow{ b }$のなす角を$\theta$とすると$\overrightarrow{ a }//\overrightarrow{ b } \iff \overrightarrow{ a }・\overrightarrow{ b }=$①____または
$\overrightarrow{ a }・\overrightarrow{ b }=$②____$\overrightarrow{ a } \bot \overrightarrow{ b } \iff \overrightarrow{ a }・\overrightarrow{ b }=$③____

◎右の図の直角三角形について、次の内積を求めよう。

④$\overrightarrow{ OA } ・ \overrightarrow{ OB }$

⑤$\overrightarrow{ OA } ・ \overrightarrow{ AB }$

⑥$\overrightarrow{ AB } ・ \overrightarrow{ OB }$

⑦$\overrightarrow{ BA } ・ \overrightarrow{ OA }$
この動画を見る 

【数C】【平面上のベクトル】ベクトルの内積1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす2つのベクトル$\vec{ a }$ ,$\vec{ b }$のなす角θを求めよ。
(1) $| \vec{ a } |=2$ ,$|\vec{ b }|=1$ ,$|3\vec{ a }+2\vec{ b } |=2\sqrt{7}$
(2) $| \vec{ a } |=4$ ,$|2\vec{ a } -\vec{ b } |=7$ ,$(\vec{ a } +\vec{ b } )·(\vec{ b } -3\vec{ a } )=-43$
この動画を見る 

福田の数学〜相反方程式の扱い方を知っていますか〜明治大学2023年理工学部第1問(2)〜相反方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)(a)$t$を実数とする。$x$についての方程式$x$+$\frac{1}{x}$=$t$ が実数解をもつための必要十分条件は$t$≦$-\boxed{\ \ カ\ \ }$または$t$≧$\boxed{\ \ キ\ \ }$ である。
(b)$k$を実数と定数とし、$f(x)$=$7x^4$+$2x^3$+$kx^2$+$2x$+7 とする。
$x$=$a$が$f(x)$=0 の解であるとき、$t$=$a$+$\frac{1}{a}$ とおくと
$\boxed{\ \ ク\ \ }t^2$+$\boxed{\ \ ケ\ \ }t$+$(k-\boxed{\ \ コサ\ \ })$=0
が成り立つ。方程式$f(x)$=0 の異なる実数解の個数が3個となるような$k$の値は$k$=$-\boxed{\ \ シス\ \ }$ である。
この動画を見る 
PAGE TOP