【数C】【ベクトルの内積】0でない2つのベクトルa, bについて、|a+b|=|a-b|ならばa⊥bであることを示せ - 質問解決D.B.(データベース)

【数C】【ベクトルの内積】0でない2つのベクトルa, bについて、|a+b|=|a-b|ならばa⊥bであることを示せ

問題文全文(内容文):

$\vec{0}$でない2つのベクトル$\vec{a}, \vec{b}$について、
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ならば
$\vec{a} \perp \vec{b}$であることを示せ。
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):

$\vec{0}$でない2つのベクトル$\vec{a}, \vec{b}$について、
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ならば
$\vec{a} \perp \vec{b}$であることを示せ。
投稿日:2025.05.30

<関連動画>

【数B】ベクトル:正射影ベクトルの仕組みと使い方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
正射影ベクトルについて解説します!
この動画を見る 

数学「大学入試良問集」【14−8ベクトルと軌跡と等式・不等式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
平面上において同一直線上にない3点$A,B,C$があるとき、次の各問いに対して、それぞれの式をみたす点$P$の集合を求めよ。
(1)$\overrightarrow{ AP }+\overrightarrow{ BP }+\overrightarrow{ CP }=\overrightarrow{ AC }$
(2)$\overrightarrow{ AB }・\overrightarrow{ AP }=\overrightarrow{ AB }・\overrightarrow{ AB }$
(3)$\overrightarrow{ AB }・\overrightarrow{ AC }+\overrightarrow{ AP }・\overrightarrow{ AP } \leqq \overrightarrow{ AB }・\overrightarrow{ AP }+\overrightarrow{ AC }・\overrightarrow{ AP }$
この動画を見る 

【数C】ベクトルの基本⑪平面ベクトルのときの三角形の面積の計算

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(-2,1),B(3,0),C(2,4)が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

【数学B/平面ベクトル】ベクトルの内積(公式と使い方)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$について、$\vec{ a }$と$\vec{ b }$の内積を求めよ。
(1)$|\vec{ a }|=2,|\vec{ b }|=3,\theta=45^{ \circ }$
(2)$|\vec{ a }|=1,|\vec{ b }|=4,\theta=150^{ \circ }$
この動画を見る 

数学「大学入試良問集」【14−2 円と直線と平面ベクトルと。】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#立命館大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$O$を中心とする円に内接する$\triangle ABC$があり、$AB=2,\ AC=3,\ BC=\sqrt{ 7 }$とする。
点$B$を通り直線$AC$の平行な直線と円$O$との交点のうち、点$B$と異なる点を$D$、直線$AO$と直線$CD$の交点を$E$とする。

(1)内積$\overrightarrow{ AB }・\overrightarrow{ AO },\overrightarrow{ AC }・\overrightarrow{ AO }$を求めよ。

(2)$\overrightarrow{ AO }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。

(3)$\overrightarrow{ AD }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。

(4)$CE:DE$を求めよ。
この動画を見る 
PAGE TOP