【数C】【ベクトルの内積】ベクトルa=(-1,7)と45°の角をなし, 大きさが5であるベクトルxを求めよ - 質問解決D.B.(データベース)

【数C】【ベクトルの内積】ベクトルa=(-1,7)と45°の角をなし, 大きさが5であるベクトルxを求めよ

問題文全文(内容文):

ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):

ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
投稿日:2025.05.30

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

【わかりやすく】位置ベクトル 点Pの位置を求める問題①(数学B/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$と点$P$に対して、以下の等式が成立するとき、点$P$はどのような位置にあるか。
(1)$\overrightarrow{ PA }+\overrightarrow{ PB }+\overrightarrow{ PC }=\overrightarrow{ AC }$
(2)$\overrightarrow{ AP }+\overrightarrow{ BP }+\overrightarrow{ CP }=\vec{ 0 }$
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$\triangle \rm{ABC}$において、$\rm{AB}=3,AC=2, \angle A=60^{ \circ }$,外心を$\rm{O}$とする。$\overrightarrow{{\textrm{AB}}}=\vec{b},\overrightarrow{{\textrm{AC}}}=\vec{c}$とするとき、$\overrightarrow{{\textrm{AO}}}$を$\vec{b},\vec{c}$を用いて表せ。

問題2
平行四辺形$\rm{ABCD}$において、次の等式が成り立つことを証明せよ。
$\rm{2(AB^2+BC^2)=AC^2+BD^2}$

問題3
$\triangle \rm{ABC}$の辺$\rm{BC}$を1:2に内分する点を$\rm{D}$とする。このとき、等式$\rm{2AB^2+AC^2=3(AD^2+2BD^2)}$が成り立つことを証明せよ。
この動画を見る 

大学入試問題#104 一橋大学(2006) ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$|\vec{ a }|=5,|\vec{ b }|=3,|\vec{ c }|=1$
$\vec{ Z }=\vec{ a }+\vec{ b }+\vec{ c }$

(1)$|\vec{ Z }|$の最大値、最小値
(2)$\vec{ a }・\vec{ Z }=20$
をみたすとき
$|\vec{ Z }|$の最大値、最小値を求めよ

出典:2006年一橋大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第5問〜空間における平面と平面の交線

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

座標平面の原点$O$を中心とする半径$1$の

球面を$C$、点$M(4,0,0)$を中心とする

半径$2$の球面上を$D$とする。

(1)$p,q$を実数とする。

$xy$平面上の直線$y=px+q$は、

球面$C$と$xy$平面が交わってできる円と

点$A_1$で接し、球面$D$と$xy$平面が交わって

できる円と点$A_2$で接し、かつ

$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。

(2)$r,s$を実数とする。

$zx$平面上の直線$z=rx+s$は、球面$C$と

$zx$平面が交わってできる円と点$B_1$で接し、

球面$D$と$zx$平面が交わってできる円と点$B_2$で

接し、かつ、$r \lt -1$を満たすとする。

$r$と$s$の値を求めよ。

以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、

$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。

また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、

$3$点$B_1,B_2,F$を通る平面を$\beta$とする。

$\alpha$と$\beta$が交わってできる直線を

$\ell$とし、$\ell$と$xy$平面の交点を

$G,\ell$と$zx$平面の交点を$H$とする。

(3)$G$の座標を求めよ。

(4)$\ell$上の点$T$を、実数$t$を用いて

$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。

$\triangle OMT$の面積が最小となる$t$の値の求めよ。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 
PAGE TOP