福田の数学〜北里大学2024医学部第3問〜確率漸化式 - 質問解決D.B.(データベース)

福田の数学〜北里大学2024医学部第3問〜確率漸化式

問題文全文(内容文):
箱Aには赤玉2個、白玉1個入っており、箱Bには白玉3個が入っている。2つの箱A、Bについて、次の操作を繰り返す。
(操作)2つの箱A,Bからそれぞれ1個ずつ玉を同時に取り出し、箱Aから取り出した玉を箱Bに入れて、箱Bから取り出した玉を箱Aに入れる。
n回目の操作を終えたときに箱Aに入っている赤玉の個数が2個、1個、0個である確率をそれぞれ$p_n,q_n,r_n$とする。
(1)$p_1,q_1,p_2,q_2$を求め、$r_n$を$p_n$と$q_n$を用いて表せ。
(2)$p_{n+1}$を$p_n,q_n$で表せ。また$q_{n+1}$を$q_n$を用いて表せ。
(3)$q_n$を求めよ。
(4)$s_n=3^np_n$とおいて、$s_n$を求めよ。また、$p_n$を求めよ。
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
箱Aには赤玉2個、白玉1個入っており、箱Bには白玉3個が入っている。2つの箱A、Bについて、次の操作を繰り返す。
(操作)2つの箱A,Bからそれぞれ1個ずつ玉を同時に取り出し、箱Aから取り出した玉を箱Bに入れて、箱Bから取り出した玉を箱Aに入れる。
n回目の操作を終えたときに箱Aに入っている赤玉の個数が2個、1個、0個である確率をそれぞれ$p_n,q_n,r_n$とする。
(1)$p_1,q_1,p_2,q_2$を求め、$r_n$を$p_n$と$q_n$を用いて表せ。
(2)$p_{n+1}$を$p_n,q_n$で表せ。また$q_{n+1}$を$q_n$を用いて表せ。
(3)$q_n$を求めよ。
(4)$s_n=3^np_n$とおいて、$s_n$を求めよ。また、$p_n$を求めよ。
投稿日:2024.11.15

<関連動画>

適当に着陸してロシアだった?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
適当に着陸した場所がロシアである確率を求める動画です
この動画を見る 

二次方程式の解と確率 2024立教新座

アイキャッチ画像
単元: #数Ⅰ#数A#2次関数#場合の数と確率#2次方程式と2次不等式#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
さいころを3回続けて投げるとき、1回目、2回目、3回目に出た目の数をそれぞれa,b,cとする。
2次方程式$ax^2+bx+c=0$について2つの解が-2、-3となる確率を求めよ
2024立教新座高等学校
この動画を見る 

数学「大学入試良問集」【4−5 整数の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#姫路工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
5桁の自然数$n$の万の位、千の位、百の位、十の位、一の位の数字をそれぞれ$a,b,c,d,e$とする。
次の各条件について、それを満たす$n$は、何個あるか。
(1)$a,b,c,d,e$が互いに異なる。
(2)$a \gt b$
(3)$a \lt b \lt c \lt d \lt e$
この動画を見る 

福田の数学〜大阪大学2022年文系第2問〜さいころの目と最大公約数、最小公倍数の確率(そのまま考えるか余事象で考えるかの判断基準を解説します)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とし、1個のさいころをn回投げて出る目の数を順に
$X_1,X_2,\ldots\ldots,X_n$とする。$X_1,X_2,\ldots\ldots,X_n$の最小公倍数を$L_n$,
最大公約数を$G_n$とするとき、以下の問いに答えよ。
(1)$L_2=5$となる確率および$G_2=5$となる確率を求めよ。
(2)$L_n$が素数でない確率を求めよ。
(3)$G_n$が素数でない確率を求めよ。

2022大阪大学文系過去問
この動画を見る 

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$ 2人でサイコロを投げる。
1回目は$A$
$1,2,3\rightarrow$同じ人が投げる
$4,5\rightarrow$別の人が投げる
$6\rightarrow$勝ち、終了

(1)
$n$回目に$A$が投げる確率$a_{n}$は?

(2)
ちょうど$n$回目で$A$が勝つ確率は?

(3)
$n$回以内に$A$が勝つ確率は?

出典:一橋大学 過去問
この動画を見る 
PAGE TOP