〇〇きの定理で解説!! - 質問解決D.B.(データベース)

〇〇きの定理で解説!!

問題文全文(内容文):
方べきの定理を使った問題解説です
単元: #数学(中学生)#中3数学#数A#図形の性質#円#方べきの定理と2つの円の関係
指導講師: 数学を数楽に
問題文全文(内容文):
方べきの定理を使った問題解説です
投稿日:2024.09.06

<関連動画>

確率、等比数列 巴戦は平等な優勝決定法か?(類)東大、神戸大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
確率、等比数列 巴戦は平等な優勝決定法か?

(類)東大、神戸大
この動画を見る 

信州大(医)整数問題の基本

アイキャッチ画像
単元: #整数の性質#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023信州大学過去問題
3つの自然数P,P+10,P+20がすべて素数となるようなPがただ1つ存在することを示せ
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第4問〜円周上の点の移動と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
円周上に15個の点$P_0,P_1,\ldots,P_{14}$が反時計回りに順に並んでいる。最初、
点$P_0$に石がある。さいころを投げて偶数の目が出たら石を反時計回りに5個先
の点に移動させ、奇数の目が出たら石を時計回りに3個先の点に移動させる。
この操作を繰り返す。例えば、石が点$P_5$にあるとき、さいころを投げて6の目が
出たら石を点$P_{10}$に移動させる。次に、5の目が出たら点$P_{10}$にある石を
点$P_7$に移動させる。

(1)さいころを5回投げて、偶数の目が$\boxed{\ \ ア\ \ }$回、奇数の目が$\boxed{\ \ イ\ \ }$回
出れば、点$P_0$にある石を点$P_1$に移動させることができる。このとき、
$x=\boxed{\ \ ア\ \ },$ $y=\boxed{\ \ イ\ \ }$は、不定方程式$5x-3y=1$の整数解に
なっている。

(2)不定方程式
$5x-3y=8$ $\cdots$①
の全ての整数解$x,y$は、$k$を整数として

$x=\boxed{\ \ ア\ \ }×8+\boxed{\ \ ウ\ \ }\ k,$ $y=\boxed{\ \ イ\ \ }×8+\boxed{\ \ エ\ \ }\ k$

と表される。①の整数解$x,y$の中で、$0 \leqq y \lt \boxed{\ \ エ\ \ }$を満たすものは

$x=\boxed{\ \ オ\ \ },$ $y=\boxed{\ \ カ\ \ }$

である。したがって、さいころを$\boxed{\ \ キ\ \ }$回投げて、偶数の目が$\boxed{\ \ オ\ \ }$回、
奇数の目が$\boxed{\ \ カ\ \ }$回出れば、点$P_0$にある石を点$P_8$に移動させることが
できる。

(3)(2)において、さいころを$\boxed{\ \ キ\ \ }$回より少ない回数だけ投げて、点$P_0$
にある石を点$P_8$に移動させることはできないだろうか。

(*)石を反時計回りまたは時計回りに15個先の点に移動させると
元の点に戻る。

(*)に注意すると、偶数の目が$\boxed{\ \ ク\ \ }$回、奇数の目が$\boxed{\ \ ケ\ \ }$回出れば、
さいころを投げる回数が$\boxed{\ \ コ\ \ }$回で、点$P_0$にある石を点$P_8$に移動させる
ことができる。このとき、$\boxed{\ \ コ\ \ } \lt \boxed{\ \ キ\ \ }$ である。

(4)点$P_1,P_2,\cdots,P_{14}$のうちから点を一つ選び、点$P_0$にある石をさいころを
何回か投げてその点に移動させる。そのために必要となる、さいころを
投げる最小回数を考える。例えば、さいころを1回投げて点$P_0$にある石を
点$P_2$へ移動させることはできないが、さいころを2回投げて偶数の目と
奇数の目が1回ずつ出れば、点$P_0$にある石を点$P_2$へ移動させることができる。
したがって、点$P_2$を選んだ場合には、この最小回数は2回である。
点$P_1,P_2,\cdots,P_{14}$のうち、この最小回数が最も大きいのは点$\boxed{\boxed{\ \ サ\ \ }}$であり、
その最小回数は$\boxed{\ \ シ\ \ }$回である。

$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪$P_{10}$
①$P_{11}$
②$P_{12}$
③$P_{13}$
④$P_{14}$

2021共通テスト過去問
この動画を見る 

【数A】【整数の性質】ユークリッドの互除法図形を用いる問題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
縦の長さが864,横の長さが1357である長方形において,長方形をできるだけ大きい正方形で切り取れるだけ切り取る。残った部分の長方形も同様に,その長方形をできるだけ大きい正方形で切り取れるだけ切り取る。この作業を,最初の長方形がすべて正方形で切り取られるまで繰り返す。
(1)最初に切り取られる正方形の1辺の長さを求めよ。また,残った部分の短辺の長さを求めよ。
(2)切り取られた正方形のうち,最も小さい正方形の面積を求めよ。
(3)切り取られた正方形は何種類か。
(4)切り取られた正方形の個数を求めよ。

縦の長さが1,横の長さが$\sqrt{3}$である長方形ABCDにおいて,長方形をできるだけ大きい正方形で切り取れるだけ切り取る。残った部分の長方形も同様に,その長方形をできるだけ大きい正方形で切り取れるだけ切り取る。右の図はこの作業を何回か繰り返したときの図である。この図の中にある長方形で,長方形ABCDと相似である長方形を見つけ,それを用いて$\sqrt{3}$が無理数であることを証明せよ。
この動画を見る 

高校入試最上級レベル 球の断面積

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
立方体を次の各面で切断したときの球の断面積=?
(1)四角形BDHF
(2)△ACF
(3)△ACH
*図は動画内参照

城北高等学校
この動画を見る 
PAGE TOP