三重県教員採用試験(数学 対数の連立方程式) - 質問解決D.B.(データベース)

三重県教員採用試験(数学 対数の連立方程式)

問題文全文(内容文):
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_x y=2 \\
\log_2 (x+1)+\log_2 (y-1)=5
\end{array}
\right.
\end{eqnarray}$
を解け.
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_x y=2 \\
\log_2 (x+1)+\log_2 (y-1)=5
\end{array}
\right.
\end{eqnarray}$
を解け.
投稿日:2021.07.25

<関連動画>

15岡山県教員採用試験(数学:6番 サイクロイドの長さ)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
曲線$c$ $\begin{eqnarray}
\left\{
\begin{array}{l}
x=r(\theta-\sin\theta) \\
y-r(1-\cos\theta)
\end{array}
\right.
\end{eqnarray}$
の長さ$\ell$を求めよ.

$r\gt 0,0\leqq \theta 2\pi$とする.
この動画を見る 

18和歌山県教員採用試験(数学:6番 二項定理)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$

$(x+5)^{70}$を展開したとき,$x$の何乗の係数が
最大になるか求めよ.
この動画を見る 

11滋賀県教員採用試験(数学:1-(4) 剰余・因数定理系)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$f(x)=x^4+px^2+gx-8$は
$(x+1)^2$で割り切れるとき,
$p,q$の値を求めよ.
この動画を見る 

11神奈川県教員採用試験(数学:8番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{8}$ $f(x)~\dfrac{\cos x+\sin x}{\cos x+\sin x+2}$の最大値とそのときの値を求めよ.
この動画を見る 

13愛知県教員採用試験(数学:6番 対数の性質)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$\log_{10} 2=0.3010$
$\log_{10} 3=0.4771$

(1)$3^{25}$は何桁
(2)$3^{25}$の最高位の数
(3)$3^{25}$の1の位の数
この動画を見る 
PAGE TOP