【高校数学】 数B-62 等差数列とその和⑤ - 質問解決D.B.(データベース)

【高校数学】 数B-62 等差数列とその和⑤

問題文全文(内容文):
①自然数の数列の和$1+2+3+・・・+n$を求めよう.

②初項48,末項-20,和490である等差数列の公差と項数を求めよう.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①自然数の数列の和$1+2+3+・・・+n$を求めよう.

②初項48,末項-20,和490である等差数列の公差と項数を求めよう.
投稿日:2016.01.26

<関連動画>

宇都宮大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n \gt 0,a_1=3$
$S_{n+1}+S_n=\displaystyle \frac{1}{3}(S_{n+1}-S_n)^2$
$a_n,S_n$を求めよ

出典:2013年宇都宮大学 過去問
この動画を見る 

芝浦工大 1の(4n+1)乗根

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$z^{4n+1}=1$の解を$1,\alpha,\alpha_2,\alpha_3・・・\alpha_{4n}$とする.

(1)$\alpha_1\alpha_2\alpha_3・・・・・・\alpha_{4n}=\Box$
(2)$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$

2001芝浦工大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第2問(2)〜漸化式と和に関する不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(2)$a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)$で与えられる
数列$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ ア\ \ }$である。
また$\sum_{n=1}^la_n \geqq 20$
を満たす最小の自然数lは$\boxed{\ \ イ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第3問〜漸化式と最大公約数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
問題文全文(内容文):
数列$\left\{a_n\right\}$を次のように定める。
$a_1=4, a_{n+1}=a_n^2+n(n+2)$
(1)$a_{2022}$を3で割った余りを求めよ。
(2)$a_{2022},a_{2023},a_{2024}$の最大公約数を求めよ。

2022東京大学文系過去問
この動画を見る 

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
この動画を見る 
PAGE TOP