問題文全文(内容文):
①初項2,公比3の等比数列について,初項から第何項までの和が初めて
1000より大きくなるかを求めよ.
②初項1,公比5の等比数列について,$a_1+a_2+・・・+a_n\geqq 10^{50}$を満たす
最小の$n$を求めよう.
ただし,$\log_{10} 2=0.3.10$とする.
①初項2,公比3の等比数列について,初項から第何項までの和が初めて
1000より大きくなるかを求めよ.
②初項1,公比5の等比数列について,$a_1+a_2+・・・+a_n\geqq 10^{50}$を満たす
最小の$n$を求めよう.
ただし,$\log_{10} 2=0.3.10$とする.
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①初項2,公比3の等比数列について,初項から第何項までの和が初めて
1000より大きくなるかを求めよ.
②初項1,公比5の等比数列について,$a_1+a_2+・・・+a_n\geqq 10^{50}$を満たす
最小の$n$を求めよう.
ただし,$\log_{10} 2=0.3.10$とする.
①初項2,公比3の等比数列について,初項から第何項までの和が初めて
1000より大きくなるかを求めよ.
②初項1,公比5の等比数列について,$a_1+a_2+・・・+a_n\geqq 10^{50}$を満たす
最小の$n$を求めよう.
ただし,$\log_{10} 2=0.3.10$とする.
投稿日:2016.02.03





