問題文全文(内容文):
領域 $D$ $ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \leq 4 \\
(\sqrt{2}x^2 - 2y) (x-2y+2) \leq 0
\end{array}
\right.
\end{eqnarray} $
を点 $(x,y)$ が動くとき $x-2y$ の最大値、最小値を求めよ。
$ax+y$ が $(\frac{6}{5}, \frac{8}{5})$ で最大となる $a$ の範囲は?
そのときの $ax+y$ のとりうる範囲は?
領域 $D$ $ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \leq 4 \\
(\sqrt{2}x^2 - 2y) (x-2y+2) \leq 0
\end{array}
\right.
\end{eqnarray} $
を点 $(x,y)$ が動くとき $x-2y$ の最大値、最小値を求めよ。
$ax+y$ が $(\frac{6}{5}, \frac{8}{5})$ で最大となる $a$ の範囲は?
そのときの $ax+y$ のとりうる範囲は?
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
領域 $D$ $ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \leq 4 \\
(\sqrt{2}x^2 - 2y) (x-2y+2) \leq 0
\end{array}
\right.
\end{eqnarray} $
を点 $(x,y)$ が動くとき $x-2y$ の最大値、最小値を求めよ。
$ax+y$ が $(\frac{6}{5}, \frac{8}{5})$ で最大となる $a$ の範囲は?
そのときの $ax+y$ のとりうる範囲は?
領域 $D$ $ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \leq 4 \\
(\sqrt{2}x^2 - 2y) (x-2y+2) \leq 0
\end{array}
\right.
\end{eqnarray} $
を点 $(x,y)$ が動くとき $x-2y$ の最大値、最小値を求めよ。
$ax+y$ が $(\frac{6}{5}, \frac{8}{5})$ で最大となる $a$ の範囲は?
そのときの $ax+y$ のとりうる範囲は?
投稿日:2024.10.18





