【高校数学】 数A-70 最大公約数・最小公倍数③ - 質問解決D.B.(データベース)

【高校数学】 数A-70 最大公約数・最小公倍数③

問題文全文(内容文):
①$a$は自然数とする.
$a+5$は4の倍数であり,$a+3$は6の倍数であるとき,
$a+9$は12の倍数であることを証明しよう.

②和が72,最大公約数が12である
2つの自然数$a,b(a\lt b)$の組をすべて求めよう.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a$は自然数とする.
$a+5$は4の倍数であり,$a+3$は6の倍数であるとき,
$a+9$は12の倍数であることを証明しよう.

②和が72,最大公約数が12である
2つの自然数$a,b(a\lt b)$の組をすべて求めよう.
投稿日:2016.05.30

<関連動画>

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
10!の正の約数dすべてについて
$\frac{1}{d+ \sqrt{10!} }$の合計
この動画を見る 

高校入試だけどもガウス記号 大阪星光学院

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
記号[x]はxを超えない最大の整数。
$[(\frac{x-1}{2})^2] = \frac{x}{2} + 3 $のときx=?

大阪星光学院高等学校
この動画を見る 

立教大のナイスな問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023立教大学過去問題
$A=\frac{10^{40}-3^{10}}{9997}$,$B=\frac{10^{36}-3^{9}}{9997}$
①Aの1の位の数
②A-3Bを素因数分解
③AとBの最大公約数
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第1問(2)〜6または8または9で割り切れる数の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$n$を自然数とする。

$1$から$n$までの自然数の中で$6$または$8$または

$9$で割り切れるものの個数を$a_n$で表す。

このとき、$a_{30}=\boxed{ウ}$となる。

また、$a_n=1000$を満たす最大の$n$は$\boxed{エ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題066〜九州大学2017年度理系第3問〜等差数列の7の倍数になる項の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 初項$a_1=1$, 公差4の等差数列$\left\{a_n\right\}$を考える。以下の問いに答えよ。
(1) $\left\{a_n\right\}$の初項から第600項のうち、7の倍数である項の個数を求めよ。
(2) $\left\{a_n\right\}$の初項から第600項のうち、$7^2$の倍数である項の個数を求めよ。
(3) 初項から第n項までの積$a_1a_2\cdots a_n$が$7^{45}$の倍数となる最小の自然数nを求めよ。

2017九州大学理系過去問
この動画を見る 
PAGE TOP