問題文全文(内容文):
次の各問いに答えなさい.
①$3-(-2)$を計算しなさい.
②$(-3)^2+5\times (-1)$を計算しなさい.
③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.
④$(-4a^2)\times 18b \div 9ab$を計算しなさい.
⑤$(\sqrt3 + 1)^2$を計算しなさい.
⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.
⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$
⑧2次方程式$(x-2)^2=81$を解きなさい.
⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.
⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.
⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.
⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.
図は動画内を参照
次の各問いに答えなさい.
①$3-(-2)$を計算しなさい.
②$(-3)^2+5\times (-1)$を計算しなさい.
③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.
④$(-4a^2)\times 18b \div 9ab$を計算しなさい.
⑤$(\sqrt3 + 1)^2$を計算しなさい.
⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.
⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$
⑧2次方程式$(x-2)^2=81$を解きなさい.
⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.
⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.
⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.
⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.
図は動画内を参照
単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#確率#円#立体図形#立体図形その他#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.
①$3-(-2)$を計算しなさい.
②$(-3)^2+5\times (-1)$を計算しなさい.
③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.
④$(-4a^2)\times 18b \div 9ab$を計算しなさい.
⑤$(\sqrt3 + 1)^2$を計算しなさい.
⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.
⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$
⑧2次方程式$(x-2)^2=81$を解きなさい.
⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.
⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.
⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.
⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.
図は動画内を参照
次の各問いに答えなさい.
①$3-(-2)$を計算しなさい.
②$(-3)^2+5\times (-1)$を計算しなさい.
③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.
④$(-4a^2)\times 18b \div 9ab$を計算しなさい.
⑤$(\sqrt3 + 1)^2$を計算しなさい.
⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.
⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$
⑧2次方程式$(x-2)^2=81$を解きなさい.
⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.
⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.
⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.
⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.
図は動画内を参照
投稿日:2016.12.17





