【高校数学】数Ⅲ-48 極座標と極方程式⑤ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-48 極座標と極方程式⑤

問題文全文(内容文):
次の直交座標を用いて表された曲線を、極方程式で表せ。

①$\sqrt3x-y-4=0$

②$x^2-y^2=-4$

③$x^2+y^2=-2x$
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の直交座標を用いて表された曲線を、極方程式で表せ。

①$\sqrt3x-y-4=0$

②$x^2-y^2=-4$

③$x^2+y^2=-2x$
投稿日:2017.07.13

<関連動画>

【数B】平面ベクトル:ベクトルの基本③ 絶対値の最大最小は2乗で考えよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
$\vert a+tb\vert $は$t=□$のとき最小値$□$を取る
この動画を見る 

【数学B/平面ベクトル】ベクトルの大きさの最小値を求める

アイキャッチ画像
単元: #平面上のベクトル#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(3,-2),\vec{ b }=(1,-2)$のとき、$|\vec{ a }+t\vec{ b }|$の最小値とそのときの実数$t$の値を求めよ。
この動画を見る 

【高校数学】 数B-28 ベクトル方程式③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
定点$A(\vec{ a })$を通り、$\overrightarrow{ n }(≠\vec{ 0 })$に垂直な直線のベクトル方程式は①__________で、$\vec{ n }$を直線の法線ベクトルという。
また、$ax+by+c=0$において、$\overrightarrow{ n }=(a,b)$はその法線ベクトルである。

◎次の点Aを通り、$\overrightarrow{ n }$が法線ベクトルである直線の方程式を求めよう。

②$A(2,-1),\vec{ n }=(3,4)$

③$A(-1,3),\vec{ n }(5,-1)$
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第3問〜外心と内心の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

(1)$\triangle ABC$において$AB=6,AC=4,$

$\cos A=\dfrac{1}{4}$とする。

$\triangle ABC$の外心を$H$とし、直線$AH$が

$\triangle ABC$の外接円と交わる点のうち、

点$A$とは異なる点を$P$とする。

このとき、$\overrightarrow{AP}=\dfrac{\boxed{ス}}{\boxed{セ}}\overrightarrow{AB}+\dfrac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{AC}$である。

(2)$\triangle ABC$において$AB=5,AC=6,$

$\cos A=\dfrac{1}{5}$とする。

$\triangle ABC$の内心を$K$とし、

直線$AK$が$\triangle ABC$の内接円と

交わる点のうち、点$A$に近いほうの点を

$Q$とする。

このとき、$\overrightarrow{AQ}=\dfrac{\boxed{チ}-\sqrt{\boxed{ツ}}}{\boxed{テ}}\overrightarrow{AK}$である。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

【高校数学】平面上のベクトルの基礎~加法・ベクトルの足し算~【数学C】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
平面上のベクトルの基礎
加法・ベクトルの足し算を確認します!
この動画を見る 
PAGE TOP