【高校数学】数Ⅲ-61 逆関数④ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-61 逆関数④

問題文全文(内容文):
次の関数の逆関数を求めよ。

①$y=x^2-9 \quad (x \geqq 0)$

②$y=\dfrac{1}{2}x^2-3 \quad (x \leqq 0)$

③$y=-x^2+2x \quad (x \geqq 1)$
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数の逆関数を求めよ。

①$y=x^2-9 \quad (x \geqq 0)$

②$y=\dfrac{1}{2}x^2-3 \quad (x \leqq 0)$

③$y=-x^2+2x \quad (x \geqq 1)$
投稿日:2017.08.30

<関連動画>

慶應(医)3次方程式 ほぼ文系知識で解けます Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
この動画を見る 

数学「大学入試良問集」【17−7 極限値が収束する条件】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\displaystyle \lim_{ x \to \frac{\pi}{3} }\displaystyle \frac{a\ \sin\ x+b\ \cos\ x}{x-\frac{\pi}{3}}=5(a,b$は定数$)$のとき、$a$と$b$の値を求めよ。
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第2問PART2〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 

【ゼロで割っているのか?】x → a の場合②:中学からの極限~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{x^2+2x-3}{x^2+x-2}$を求めよ.
この動画を見る 

【数Ⅲ】【関数と極限】数列の極限5 ※問題文は概要欄

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列$\{ a_n \}, \{ b_n \}, \{ c_n \}$について、次の事柄は正しいか。
正しいものは証明し、正しくないものは、その反例をあげよ。
ただし、$\alpha$は定数とする。
(1) $\displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = \infty$ ならば $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0$
(2) $ \displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = 0$ ならば $ \displaystyle \lim_{n \to \infty}a_nb_n=0$
(3) $ \displaystyle b_n \lt a_n \lt c_n , \lim_{n \to \infty}(c_n-b_n)=0$ ならば $ \{ a_n \}$は収束する。
(4) $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0, \lim_{n \to \infty}a_n =\alpha$ ならば $\displaystyle \lim_{n \to \infty}b_n= \alpha$
この動画を見る 
PAGE TOP