【数Ⅱ】図形と方程式:円:円と方程式:円上の点Pにおける接線の方程式を求めよ。例題付き! - 質問解決D.B.(データベース)

【数Ⅱ】図形と方程式:円:円と方程式:円上の点Pにおける接線の方程式を求めよ。例題付き!

問題文全文(内容文):
円上の点における接線の方程式の求め方を解説!実際に
(1)円 x²+y²=5上の点P(1, 2)における接線の方程式、
(2) 円x²+y²= 36上の点P(6, 0)における接線の方程式 
も求めます。
チャプター:

0:06 解説開始!まずは接線の方程式の求め方を確認!
4:37 例1)【円 x²+y²=5上の点P(1, 2)における接線の方程式】を求める!
6:49 例2)【円x²+y²= 36上の点P(6, 0)における接線の方程式】も求める!

単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
円上の点における接線の方程式の求め方を解説!実際に
(1)円 x²+y²=5上の点P(1, 2)における接線の方程式、
(2) 円x²+y²= 36上の点P(6, 0)における接線の方程式 
も求めます。
投稿日:2023.03.12

<関連動画>

福田の一夜漬け数学〜図形と方程式〜軌跡(5)動点が2個ある場合の軌跡、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 定点$A(2,0),B(4,0)$と円$C:x^2+y^2=9$ がある。
動点$P$が円$C$上を動くとき、$\triangle ABP$の重心$G$の軌跡を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第2問(1)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (1)0≦x≦π のとき、$\sqrt3\sin x$+$\cos x$=$\sqrt2$を解くと$x$=$\boxed{\ \ コ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜神戸大学2024年理系第2問〜放物線と2接線た作る三角形の重心の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$, $b$, $c$は実数で、$a$≠0とする。放物線$C$と直線$l_1$, $l_2$をそれぞれ
$C$:$y$=$ax^2$+$bx$+$c$
$l_1$:$y$=$-3x$+3
$l_2$:$y$=$x$+3
で定める。$l_1$, $l_2$がともに$C$と接するとき、以下の問いに答えよ。
(1)$b$を求めよ。$c$を$a$を用いて表せ。
(2)$C$が$x$軸と異なる2点で交わるとき、$\displaystyle\frac{1}{a}$のとりうる値の範囲を求めよ。
(3)$C$と$l_1$の接点をP、$C$と$l_2$の接点をQ、放物線$C$の頂点をRとする。$a$が(2)の条件を満たしながら動くとき、$\triangle PQR$の重心Gの軌跡を求めよ。
この動画を見る 

円を表す方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円を表す方程式
*図は動画内参照
この動画を見る 

06兵庫県教員採用試験(数学:3番 円と直線の関係)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
円$c:x^2+y^2=1+m$と直線$l:y=-3x+m$が異なる2点$A,B$で交わる。
$m$は定数

(1)
$m$の値の範囲を求めよ

(2)
弦$AB$の長さの最大値とそのときの$m$の値を求めよ。
この動画を見る 
PAGE TOP