【高校数学】数Ⅲ-79 関数の極限④ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-79 関数の極限④

問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to \infty}(3x^2-5x+2)$

②$\displaystyle \lim_{x\to \infty}\dfrac{5x+4}{x^2+3x-1}$

③$\displaystyle \lim_{x\to \infty}\dfrac{2x^2-1}{3x^2-4x+2}$

④$\displaystyle \lim_{x\to \infty}\dfrac{x^2+3x}{x-2}$

⑤$\displaystyle \lim_{x\to \infty}(\sqrt{x^2+3x-1}+x)$
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to \infty}(3x^2-5x+2)$

②$\displaystyle \lim_{x\to \infty}\dfrac{5x+4}{x^2+3x-1}$

③$\displaystyle \lim_{x\to \infty}\dfrac{2x^2-1}{3x^2-4x+2}$

④$\displaystyle \lim_{x\to \infty}\dfrac{x^2+3x}{x-2}$

⑤$\displaystyle \lim_{x\to \infty}(\sqrt{x^2+3x-1}+x)$
投稿日:2018.03.13

<関連動画>

福田の数学〜早稲田大学2022年教育学部第1問(4)〜無限級数の和と部分分数分解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)次の無限級数の和は自然数となる。その自然数を求めよ。
$\sum_{n=6}^{\infty}\frac{1800}{(n-5)(n-4)(n-1)n}$

2022早稲田大学教育学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系037〜極限(37)関数の極限、色々な極限(7)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$数学\textrm{III}$ $色々な極限(7)$
$\lim_{n \to \infty}n^2(\cos\frac{1}{n+1}-\cos\frac{1}{2n})$を求めよ。
この動画を見る 

数学「大学入試良問集」【17−3② 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{4a_n^2+9}{8a_n}(n=1,2,3,・・・)$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \displaystyle \frac{3}{2}(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\displaystyle \frac{3}{2} \lt \displaystyle \frac{1}{3}\left[ a_n-\dfrac{ 3 }{ 2 } \right]^2(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

大学入試問題#74 神戸大学(1991) 数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_n\ a_{n+1} }$のとき
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。

出典:1991年神戸大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系013〜極限(12)無限等比級数とグラフ

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(13)
$x≠-1$とする。
$x+\displaystyle \frac{x}{1+x}+$$\displaystyle \frac{x}{(1+x)^2}+$$\displaystyle \frac{x}{(1+x)^3}+\cdots$

が収束する$x$の範囲を求めよ。このとき、
その和$f(x)$のグラフを描け。
この動画を見る 
PAGE TOP