【高校数学】数Ⅲ-79 関数の極限④ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-79 関数の極限④

問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to \infty}(3x^2-5x+2)$

②$\displaystyle \lim_{x\to \infty}\dfrac{5x+4}{x^2+3x-1}$

③$\displaystyle \lim_{x\to \infty}\dfrac{2x^2-1}{3x^2-4x+2}$

④$\displaystyle \lim_{x\to \infty}\dfrac{x^2+3x}{x-2}$

⑤$\displaystyle \lim_{x\to \infty}(\sqrt{x^2+3x-1}+x)$
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to \infty}(3x^2-5x+2)$

②$\displaystyle \lim_{x\to \infty}\dfrac{5x+4}{x^2+3x-1}$

③$\displaystyle \lim_{x\to \infty}\dfrac{2x^2-1}{3x^2-4x+2}$

④$\displaystyle \lim_{x\to \infty}\dfrac{x^2+3x}{x-2}$

⑤$\displaystyle \lim_{x\to \infty}(\sqrt{x^2+3x-1}+x)$
投稿日:2018.03.13

<関連動画>

福田のわかった数学〜高校3年生理系020〜極限(20)関数の極限、無理関数の極限(5)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(5)

$\displaystyle\lim_{x \to \infty}(\sqrt{x^2+2x+3}-(ax+b))$
を求めよ。
この動画を見る 

数学「大学入試良問集」【17−4 漸化式と等比数列・極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京農工大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次のように定義された数列を$\{a_n\}$とする。
$a_1=r^2,a_2=1,2a_n=(r+3)a_{n-1}-(r+1)a_{n-2}(n \geqq 3)$
このとき、次の各問いに答えよ。
(1)$b_n=a_{n+1}-a_n$とおくとき、$b_n$を$n$と$r$を用いて表せ。
(2)$a_n$を求めよ。
(3)数列$\{a_n\}$が収束するような$r$の範囲およびそのときの極限値を求めよ。
この動画を見る 

大学入試問題#598「計算が大変でした」 関西大学(2009) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n-k}{n\sqrt{ 3n^2+k^2 }}$

出典:2009年関西大学 入試問題
この動画を見る 

【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
無限級数
$1- (x+y) $$ + (x+y)^2 - (x+y)^3 $$ + \cdots \cdots + \{ -(x+y) \}^{n-1} $$ + \cdots \cdots$
が収束し、その和が $\displaystyle \frac{1}{1-x}$ であるとき、
$y$ を $x$ で表し、そのグラフをかけ。
この動画を見る 

福田の数学〜中央大学202理工学部第4問〜sin(x)のn乗の定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n=1,2,3,\cdots$に対し、$\displaystyle I_n=\int_0^{\frac{\pi}{2}}\sin^nxdx$とおく。また、$\displaystyle I_0=\int_0^{\frac{\pi}{2}}1dx$とする。
(1) $(n+1)I_{n+1}=nI_{n-1}$を示せ。
(2) $nI_nI_{n-1}$を求めよ。
(3) $I_{n+1} < I_n$を示せ。
(4) 極限$\displaystyle \lim_{n \to\infty}nI_n^2$を求めよ。
この動画を見る 
PAGE TOP