問題文全文(内容文):
任意の実数$x,y$に対して$f(0)=1$、
$f(xy+1)=f(x)f(y)-f(y)-x+2$
が成り立つような実数値関数$f(x)$をすべて求めて下さい。
任意の実数$x,y$に対して$f(0)=1$、
$f(xy+1)=f(x)f(y)-f(y)-x+2$
が成り立つような実数値関数$f(x)$をすべて求めて下さい。
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
任意の実数$x,y$に対して$f(0)=1$、
$f(xy+1)=f(x)f(y)-f(y)-x+2$
が成り立つような実数値関数$f(x)$をすべて求めて下さい。
任意の実数$x,y$に対して$f(0)=1$、
$f(xy+1)=f(x)f(y)-f(y)-x+2$
が成り立つような実数値関数$f(x)$をすべて求めて下さい。
投稿日:2025.01.27





