問題文全文(内容文):
数列$\{a_n\}$が$a_1=0,a_2=1$
$a_n=5a_{n-1}-a_{n-2} \quad (n \geqq 3)$
を満たしている。
$a_n$が
(1)$5$で割り切れる
(2)$15$で割り切れる
となる$n$を求めて下さい。
数列$\{a_n\}$が$a_1=0,a_2=1$
$a_n=5a_{n-1}-a_{n-2} \quad (n \geqq 3)$
を満たしている。
$a_n$が
(1)$5$で割り切れる
(2)$15$で割り切れる
となる$n$を求めて下さい。
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数列$\{a_n\}$が$a_1=0,a_2=1$
$a_n=5a_{n-1}-a_{n-2} \quad (n \geqq 3)$
を満たしている。
$a_n$が
(1)$5$で割り切れる
(2)$15$で割り切れる
となる$n$を求めて下さい。
数列$\{a_n\}$が$a_1=0,a_2=1$
$a_n=5a_{n-1}-a_{n-2} \quad (n \geqq 3)$
を満たしている。
$a_n$が
(1)$5$で割り切れる
(2)$15$で割り切れる
となる$n$を求めて下さい。
投稿日:2025.02.22





