福田のおもしろ数学436〜三角方程式の解の総和の極限 - 質問解決D.B.(データベース)

福田のおもしろ数学436〜三角方程式の解の総和の極限

問題文全文(内容文):

正の整数$k$に対して

$x=2k\pi \sin x$

の$x\geqq 0$におけるすべての解の和を$s(k)$とする。

このとき、$\displaystyle \lim_{k\to\infty}\dfrac{s(k)}{k^2}$を求めよ。
   
単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

正の整数$k$に対して

$x=2k\pi \sin x$

の$x\geqq 0$におけるすべての解の和を$s(k)$とする。

このとき、$\displaystyle \lim_{k\to\infty}\dfrac{s(k)}{k^2}$を求めよ。
   
投稿日:2025.03.13

<関連動画>

福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$a$と$b$を正の整数とし、$f(x)=ax^2-bx+4$とおく。2次方程式$f(x)=0$は
異なる2つの実数解をもつとする。
$(\textrm{a})$2次方程式$f(x)=0$の2つの解がともに整数であるとき
$\left\{
\begin{array}{1}
a=1  \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.$  
または 
$\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\$
である。

$(\textrm{b})b=7$とする。2次方程式$f(x)=0$の2つの解のうち一方が整数であるとき、
$a=\boxed{\ \ エ\ \ }$であり、$f(x)=0$の2つの解は
$x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}$
である。

2021明治大学理工学部過去問
この動画を見る 

00京都府採用試験(数学:3番相加相乗平均)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
3⃣3つの正の数の相加平均と相乗平均の関係を記述し、それを証明せよ。
この動画を見る 

練習問題50 宮崎大学 相加・相乗平均

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x \gt 0,\ y \gt 0$
$x+y=1$のとき
$(1+\displaystyle \frac{1}{x})(1+\displaystyle \frac{1}{y}) \geqq 9$を示せ

出典:宮崎大学
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第1問(2)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(2)等式 $f(x)$=$12x^2$+$\displaystyle 6x\int_0^1f(t)dt$+$\displaystyle 2\int_0^1tf(t)dt$ を満たす関数$f(x)$を求めよ。
この動画を見る 

数学は学んだことを実際の問題に当てはめるのが大切~全国入試問題解法 #shorts #数学 #高校入試 #sound #動体視力 #素数

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#式と証明#恒等式・等式・不等式の証明#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ ab=9991 $となる2以上の自然数$ a,b $の値をそれぞれ求めなさい.

立命館高校過去問
この動画を見る 
PAGE TOP