問題文全文(内容文):
$0$以上の実数で定義された実数値関数$f(x)$は
(i)$f(1)=1$
(ii)$f\left(\dfrac{1}{x+y}\right)=f\left(\dfrac{1}{x}\right)+f\left(\dfrac{1}{y}\right)$
$ \hspace{ 100pt } (x+y,x,y\neq 0)$
(iii)$(x+y)f(x+y)=xyf(x)f(y)$
$\hspace{ 100pt }(x+y,x,y\neq 0)$
を満たしている。$f(x)$を求めよ。
$0$以上の実数で定義された実数値関数$f(x)$は
(i)$f(1)=1$
(ii)$f\left(\dfrac{1}{x+y}\right)=f\left(\dfrac{1}{x}\right)+f\left(\dfrac{1}{y}\right)$
$ \hspace{ 100pt } (x+y,x,y\neq 0)$
(iii)$(x+y)f(x+y)=xyf(x)f(y)$
$\hspace{ 100pt }(x+y,x,y\neq 0)$
を満たしている。$f(x)$を求めよ。
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$0$以上の実数で定義された実数値関数$f(x)$は
(i)$f(1)=1$
(ii)$f\left(\dfrac{1}{x+y}\right)=f\left(\dfrac{1}{x}\right)+f\left(\dfrac{1}{y}\right)$
$ \hspace{ 100pt } (x+y,x,y\neq 0)$
(iii)$(x+y)f(x+y)=xyf(x)f(y)$
$\hspace{ 100pt }(x+y,x,y\neq 0)$
を満たしている。$f(x)$を求めよ。
$0$以上の実数で定義された実数値関数$f(x)$は
(i)$f(1)=1$
(ii)$f\left(\dfrac{1}{x+y}\right)=f\left(\dfrac{1}{x}\right)+f\left(\dfrac{1}{y}\right)$
$ \hspace{ 100pt } (x+y,x,y\neq 0)$
(iii)$(x+y)f(x+y)=xyf(x)f(y)$
$\hspace{ 100pt }(x+y,x,y\neq 0)$
を満たしている。$f(x)$を求めよ。
投稿日:2025.04.07





