福田の数学〜早稲田大学理工学部2025第2問〜領域に含まれる三角形の面積の最大値 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学理工学部2025第2問〜領域に含まれる三角形の面積の最大値

問題文全文(内容文):

$\boxed{2}$

$xy$平面上で、

連立不等式

$0\lt x \leqq 1,0\leqq y \leqq \log\dfrac{1}{x}$

で定まる領域と$y$軸の

$y\geqq 0$の部分を合わせた図形を$D$とする。

$D$に含まれる三角形の最大値を求めよ。

$2025$年早稲田大学理工学部過去問題
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$xy$平面上で、

連立不等式

$0\lt x \leqq 1,0\leqq y \leqq \log\dfrac{1}{x}$

で定まる領域と$y$軸の

$y\geqq 0$の部分を合わせた図形を$D$とする。

$D$に含まれる三角形の最大値を求めよ。

$2025$年早稲田大学理工学部過去問題
投稿日:2025.04.21

<関連動画>

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面

アイキャッチ画像
単元: #平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。

2021明治大学全統過去問
この動画を見る 

【数Ⅰ】【データの分析】672、693、644、665、630、644でc=7、x₀=644、u=(x-x₀)/c として新たな変量uを作る。変量uとxの平均値、分散、標準偏差を求めよ。

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#データの分析#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量xのデータが次のように与えられている。
672,693、644、665、630、644
c=7、x₀=644、u=(x-x₀)/c として新たな変量uを作る。
(1)変量uのデータの平均値、分散、標準偏差を求めよ。
(2)変量xのデータの平均値、分散、標準偏差を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け5 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$k$は定数とする。2次関数$y=x^2+2kx+k$の最小値を$m$とする。
(1) $m$は$k$の関数である。$m$を$k$の式で表せ。
(2) $k$の関数$m$の最大値とそのときの$k$の値を求めよ。
この動画を見る 

久しぶりの二次関数 基本です。広島県

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=ax^2$
$a=?$(a>0)
*図は動画内参照

広島県
この動画を見る 

福田の一夜漬け数学〜2次関数・解の存在範囲(3)少なくとも1つ〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2+(2-m)x+4$$-2m$$=0$ が$-1 \lt x \lt 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。

${\Large\boxed{2}} x^2+(2-m)x+4$$-2m$$=0$ が$-1 \leqq x \leqq 1$の範囲に少なくとも
1つ解をもつような$m$の値の範囲を求めよ。

(数学$\textrm{II}$の内容)
${\Large\boxed{3}}$ 実数$m$が$1 \leqq m \leqq 3$の範囲を動くとき
直線$y=2mx+m^2$ の通過する範囲を図示せよ。
この動画を見る 
PAGE TOP