問題文全文(内容文):
$\boxed{2}$
座標平面上に原点を中心とす半径$3$の円$C_1$がある。
また、直線$x=2$上の点$P$を中心とする半径$1$の円を
$C_2$とする。
(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の
$y$座標の範囲を求めよ。
(2)$C_1$と$C_2$が共有点を$2$つ持つとき、
その$2$つの共有点を通る直線を$\ell$とする。
$\ell$に関して$P$と対称な位置にある点を$Q$とする。
ただし、$P$が$\ell$上にあるときは$Q=P$とする。
$P$の$y$座標が(1)で求めた範囲を動くとき、
点$Q$の軌跡を求め、図示せよ。
$2025$年一橋大学文系過去問題
$\boxed{2}$
座標平面上に原点を中心とす半径$3$の円$C_1$がある。
また、直線$x=2$上の点$P$を中心とする半径$1$の円を
$C_2$とする。
(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の
$y$座標の範囲を求めよ。
(2)$C_1$と$C_2$が共有点を$2$つ持つとき、
その$2$つの共有点を通る直線を$\ell$とする。
$\ell$に関して$P$と対称な位置にある点を$Q$とする。
ただし、$P$が$\ell$上にあるときは$Q=P$とする。
$P$の$y$座標が(1)で求めた範囲を動くとき、
点$Q$の軌跡を求め、図示せよ。
$2025$年一橋大学文系過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
座標平面上に原点を中心とす半径$3$の円$C_1$がある。
また、直線$x=2$上の点$P$を中心とする半径$1$の円を
$C_2$とする。
(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の
$y$座標の範囲を求めよ。
(2)$C_1$と$C_2$が共有点を$2$つ持つとき、
その$2$つの共有点を通る直線を$\ell$とする。
$\ell$に関して$P$と対称な位置にある点を$Q$とする。
ただし、$P$が$\ell$上にあるときは$Q=P$とする。
$P$の$y$座標が(1)で求めた範囲を動くとき、
点$Q$の軌跡を求め、図示せよ。
$2025$年一橋大学文系過去問題
$\boxed{2}$
座標平面上に原点を中心とす半径$3$の円$C_1$がある。
また、直線$x=2$上の点$P$を中心とする半径$1$の円を
$C_2$とする。
(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の
$y$座標の範囲を求めよ。
(2)$C_1$と$C_2$が共有点を$2$つ持つとき、
その$2$つの共有点を通る直線を$\ell$とする。
$\ell$に関して$P$と対称な位置にある点を$Q$とする。
ただし、$P$が$\ell$上にあるときは$Q=P$とする。
$P$の$y$座標が(1)で求めた範囲を動くとき、
点$Q$の軌跡を求め、図示せよ。
$2025$年一橋大学文系過去問題
投稿日:2025.05.06





