問題文全文(内容文):
$\boxed{2}$
整数$a,b,c$に対し次の条件を考える。
(*)$ a\geqq b \geqq 0$かつ$a^2-b^2=c$
以下の問いに答えよ。
(1)$c=24,25,26$それぞれの場合に
条件(*)をみたす
整数の組$(a,b)$をすべて求めよ。
(2)$p$は$3$以上の素数、$n$は正の整数、
$c=4p^{2n}$とする。
このとき、条件(*)をみたす整数の組$(a,b)$を
すべて求めよ。
$2025$年名古屋大学理系過去問題
$\boxed{2}$
整数$a,b,c$に対し次の条件を考える。
(*)$ a\geqq b \geqq 0$かつ$a^2-b^2=c$
以下の問いに答えよ。
(1)$c=24,25,26$それぞれの場合に
条件(*)をみたす
整数の組$(a,b)$をすべて求めよ。
(2)$p$は$3$以上の素数、$n$は正の整数、
$c=4p^{2n}$とする。
このとき、条件(*)をみたす整数の組$(a,b)$を
すべて求めよ。
$2025$年名古屋大学理系過去問題
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
整数$a,b,c$に対し次の条件を考える。
(*)$ a\geqq b \geqq 0$かつ$a^2-b^2=c$
以下の問いに答えよ。
(1)$c=24,25,26$それぞれの場合に
条件(*)をみたす
整数の組$(a,b)$をすべて求めよ。
(2)$p$は$3$以上の素数、$n$は正の整数、
$c=4p^{2n}$とする。
このとき、条件(*)をみたす整数の組$(a,b)$を
すべて求めよ。
$2025$年名古屋大学理系過去問題
$\boxed{2}$
整数$a,b,c$に対し次の条件を考える。
(*)$ a\geqq b \geqq 0$かつ$a^2-b^2=c$
以下の問いに答えよ。
(1)$c=24,25,26$それぞれの場合に
条件(*)をみたす
整数の組$(a,b)$をすべて求めよ。
(2)$p$は$3$以上の素数、$n$は正の整数、
$c=4p^{2n}$とする。
このとき、条件(*)をみたす整数の組$(a,b)$を
すべて求めよ。
$2025$年名古屋大学理系過去問題
投稿日:2025.05.15





