福田の数学〜慶應義塾大学2025経済学部第1問(1)〜三角形の面積と線分の長さ - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2025経済学部第1問(1)〜三角形の面積と線分の長さ

問題文全文(内容文):

$\boxed{1}$

(1)$\sin \alpha=\dfrac{3}{5},\cos \alpha=\dfrac{4}{5}$とする。

座標平面上の$4$点$O,A,B,C$を、

$O(0,0),A(5,0),B(5\cos\alpha,5\sin\alpha),$

$C(5\cos3\alpha,5\sin3\alpha)$とする。

(a)$\triangle OAB$の面積は$\dfrac{\boxed{アイ}}{\boxed{ウ}}$、

辺$AB$の長さは$\sqrt{\boxed{エオ}}$である。

(b)$\triangle OBC$の面積は$\boxed{カキ}$、辺$AB$の長さは$\boxed{ク}$である。

(c)線分$AC$の長さは$\dfrac{\boxed{ケコ}}{\boxed{サ}}\sqrt{\boxed{シス}}$

$2025$年慶應義塾大学経済学部過去問題
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)$\sin \alpha=\dfrac{3}{5},\cos \alpha=\dfrac{4}{5}$とする。

座標平面上の$4$点$O,A,B,C$を、

$O(0,0),A(5,0),B(5\cos\alpha,5\sin\alpha),$

$C(5\cos3\alpha,5\sin3\alpha)$とする。

(a)$\triangle OAB$の面積は$\dfrac{\boxed{アイ}}{\boxed{ウ}}$、

辺$AB$の長さは$\sqrt{\boxed{エオ}}$である。

(b)$\triangle OBC$の面積は$\boxed{カキ}$、辺$AB$の長さは$\boxed{ク}$である。

(c)線分$AC$の長さは$\dfrac{\boxed{ケコ}}{\boxed{サ}}\sqrt{\boxed{シス}}$

$2025$年慶應義塾大学経済学部過去問題
投稿日:2025.05.19

<関連動画>

【数学】中高一貫校用問題集場合の数と確率:重複順列:9人を2つのグループに分ける。考え方は格付けチェック!?

単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
9人を次のように分ける方法は通りあるか。
(1)2つのグループA、Bに分ける。ただし、各グループには少なくとも1人は入るものとする。
(2)2つのグループに分ける。
この動画を見る 

【高校数学】 数A-39 傍心と傍接円

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
三角形の1つの①の①と,他の2つの頂点における
②の②は1点で交わる.この点を傍心という.

③$\triangle ABC$の頂点$A$における内角の二等分線と直線$B,C$
それぞれにおける外角の二等分線は1点で交わることを証明しよう.

図は動画内参照
この動画を見る 

福田のおもしろ数学073〜割り切れることを証明しよう

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
任意の自然数$n$に対して、$11^n$-$8^n$-$3^n$ が24で割り切れることを証明せよ。
この動画を見る 

確率 中央大(商)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2020中央大学過去問題
$1,2,2^2,2^3,\cdots,2^{n-1}$
の数字が1つずつ書かれたn枚のカードから1枚をとり出して
その数をX,それを戻してもう1枚とり出してその数をYとする
①X=2Yとなる確率
②XがYの倍数となる確率
この動画を見る 

お茶の水女子大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は整数
$a^3+2b^3+4c^3=2abc$

(1)
$a,b,c$はすべて偶数であることを示せ

(2)
$(a,b,c)$を全て求めよ

出典:1985年お茶の水女子大学 過去問
この動画を見る 
PAGE TOP