問題文全文(内容文):
$xy-x^3\tan \dfrac{1}{x}+y^2=0$のとき、
$\displaystyle \lim_{x\to\infty}\dfrac{y}{x}$を求めよ。
$xy-x^3\tan \dfrac{1}{x}+y^2=0$のとき、
$\displaystyle \lim_{x\to\infty}\dfrac{y}{x}$を求めよ。
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$xy-x^3\tan \dfrac{1}{x}+y^2=0$のとき、
$\displaystyle \lim_{x\to\infty}\dfrac{y}{x}$を求めよ。
$xy-x^3\tan \dfrac{1}{x}+y^2=0$のとき、
$\displaystyle \lim_{x\to\infty}\dfrac{y}{x}$を求めよ。
投稿日:2025.06.22





